Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение относительного покоя материальной

Уравнение относительного покоя материальной точки имеет вид  [c.125]

Применим уравнение (6 ) динамики относительного покоя материальной точки  [c.150]

Относительное движение материальной точки. Дифференциальные уравнения относительного движения материальной точки переносная и кориолисова силы инерции. Принцип относительности классической механики. Случаи относительного покоя.  [c.8]


Итак, уравнение (2.88) есть уравнение относительного равновесия, частное решение которого отвечает состоянию относительного покоя материальной точки.  [c.104]

Уравнение (11) представляет собой уравнение относительного равновесия (покоя) точки. Из него следует, что в случае относительного равновесия (покоя) материальной точки активная сила, реакция связей и переносная сила инерции взаимно уравновешиваются.  [c.503]

Но иначе, нежели с поступательным движением Земли, обстоит дело с движением ее вокруг оси, которое оказывает заметное влияние на движения тел относительно Земли. Чтобы найти это влияние, представим себе систему материальных точек, на которые действуют произвольные силы и которые подчинены любым уравнениям связей рассмотрим положения, которые имеют эти точки в момент времени / одновременно в двух системах координат, из которых одна покоится в пространстве, другая движется. Пусть т—масса одной из точек х, у, г — ее координаты X, У, 2 — составляющие действующей на нее силы в момент времени I в покоящейся системе координат х, у, г, X, У, 2 — эти же величины в движущейся системе координат наконец, 6х, 6у, 6г — виртуальные изменения X, у, г и 6х, б//, 6г — соответствующие вариации х , у. Тогда по принципу Даламбера  [c.76]

Уравнения движения. Рассмотрим случай, когда изменяемое тело состоит из собственно твердого тела (корпуса) и материальной точки массы ш, которая перемещается внутри корпуса. Предполагается, что движение всей системы начинается из состояния покоя. Движение точки относительно корпуса считается заданным в том смысле, что в системе отсчета, жестко связанной с корпусом, координаты точки — известные функции времени. Фактически задача сводится к изучению совместного движения тела (корпуса) в жидкости и точки при наличии нестационарных голономных связей. В соответствии с принципом освобождаемо-сти от связей (см., например, [4]), движение составного тела в идеальной жидкости (система тело + жидкость + точка) можно интерпретировать как классическую задачу о движении в жидкости твердого тела (система тело + жидкость) при действии некоторых заданных внутренних сил, в общем случае зависящих от времени. Указанные силы, очевидно, представляют собой не что иное, как силы  [c.465]

Рассмотрим прежде всего случай, когда материальная точка покоится относительно равномерно вращающейся системы отсчета /С, связанной с Землей. Полагая в уравнении движения (47.6)  [c.267]


Прежде всего, следует заметить, что на самом деле измерялась не фазовая скорость волны, а групповая. Например, в опытах Физо световой сигнал посылается вдоль некоторого пути туда и обратно и измеряется промежуток времени между моментами излучения и приема сигналов. Однако скорость светового сигнала равна фазовой скорости с только тогда, когда система S покоится относительно эфира в системе S скорость светового сигнала уже не будет равна фазовой скорости с (1.24). Это легко понять, если учесть, что световой сигнал — это вполне определенное количество электромагнитной энергии, а энергия, как и масса, является величиной сохраняющейся, так что световой сигнал в некотором отношении следует рассматривать здесь как материальную частицу. Следовательно, мы должны ожидать, что скорость светового сигнала в S определяется из (1.3), (1.5) и (1.6), если положить в этих уравнениях и = с, т. е. скорости света в эфире.  [c.16]

Следовательно, электрический заряд элемента объема материальной среды — инвариант. (То же самое справедливо и для полного заряда.) Эта важная теорема об инвариантности электрического заряда является, таким образом, следствием справедливости уравнения непрерывности во всех инерциальных системах. Это можно показать также с помощью следующего рассуждения. Пусть заряженная частица с зарядом е первоначально покоится в системе 5. Под действием силы частица ускоряется, пока не достигнет той же скорости V, что и система 5 относительно 5. Поскольку заряд частицы сохраняется во время ускорения, то частица пока имеет заряд е относительно 5. С другой стороны, частица теперь имеет относительно 5 нулевую скорость, и поскольку она относительно 5 находится в том же положении, в каком находилась первоначально относительно 5, то заряд е частицы относительно 5 должен равняться постоянному заряду е относительно 5. Следовательно, в любое время е = е, что соответствует (5.10).  [c.109]

При этом из уравнения (IV.227а) вытекает условие относительного покоя материальной точки в векторной форме  [c.446]

Пример 16.4. Рассмотрим относительный покой материальной мчки М на поверхности Земли (рпс. 16.8). Выберем начало подвижной системы координат в центре Земли О и направим ось О г на северный полюс, а ось О у направим в точку пересечения меридиана с экватором. Угол й называется геоцентрической гииротой. Пусть плотность Земли одинакова на каждом шаровом слое. Тогда сила притяжения I = та направлена к центру Земли. В переносном движении точка М движется по окружности радиуса Л/=Ясо5 9, где R — радиус Земли, с постоянной угловой скоростью О. Переносное ускорение направлено к точке А и равно по модулю AMQ . Переносная кориолисова сила (— равна по модулю mRQ os Уравнение относительно покоя (16.25) запишем как  [c.303]

Оптика движущихся тел является другой областью оптики, не затронутой в настоящей книге. Как и квантовая теория, она превратилась в широкий независимый раздел знания. Первым наблюденным явлением в этой области, отмеченным в 1728 г. Джеймсом Брэдли (1692—1762 гг.) [55], было явление аберрации неподвижных звезд , т. е. обнаружение небольшого различия их угловых положений, связанного с движением Земли относительно направления светового луча. Брэдли правильно понял это явление, связав его с конечностью скорости распространения света, в результате чего ему удалось определить последнюю. Мы уже упоминали и другие явления, относящиеся к оптике движущихся сред Френель первый заинтересовался увлечением света движущимися телами и показал, что световой эфир участвует в движении со скоростью, которая меньше скорости движущихся тат затем Физо экспериментально продемонстрировал такое частичное увлечение света в опытах с текущей водой. Христиан Допплер (1803—1853 гг.) [56] исследовал эффекты, связанные с двнже1П1ем источника свста или наблюдателя, и сформулировал хорошо известный принцип, названный его именем. До тех пор, пока теория упругого светового эфира считалась верной, а область исследований и точность измерений были достаточно ограниченными, идея Френеля о частичном увлечении света была способна объяснить все наблюдаемые явления. Электромагнитная же теории света встретилась з.цесь с трудностями фундаментального характера. Герц первый попытался обобщить уравнения Макс-ветла на случай движущихся тел. Однако его формулы противоречили некоторым электромагнитным и оптическим измерениям. Огромную роль сыграла теория Гендрика Антона Лоренца (1853—1928 гг.), который предположил, что эфир в состоянии абсолютного покоя является носителем электромагнитного поля, и вывел свойства материальных тел из взаимодействия элементарных электрических частиц — электронов. Е.му удалось показать, что фре-нелевские коэффициенты увлечения света можно получить из его теории и все известные в то время (1895 г.) явления можно объяснить на основании его гипотезы [57]. Однако в результате колоссального увеличения точности измерения оптических путей, достигнутого с помощью интерферометра Альберта Абрагама Майкельсона (1852—1931 гг.), возникла новая трудность оказалось невозможным обнаружить эфирный ветер , наличие которого следовало из теории неподвижного э ира [58, 59). Эта трудность была преодолена в 1905 г, Альберто.м Эйнштейном [60] в его специальной теории относительности.  [c.21]


Согласно определению математического ротора усилие Р является приведенной силой физического ротора согласно уравнению (64). Точкой приведения силы Р является точка Шток 5 имеет массу Шц,, которая также является приведенной для данного физического ротора. Вал ротора служит звеном приведения момента сил М . В плоскости перемещения грузов имеются две системы координат с началами в точках О и От. Точка О может быть выбрана произвольно на оси вращения (оси Оу), точка 0 является точкой приведения силы Р, лежит на оси Оу и является одновременно вершиной профиля 3. Согласно схеме рис. 42 на рис. 43 ордината точки приведения силы Р в системе хОу обозначена Ь и изменяется от до Следовательно, координаты точки Ох в начальном положении в координатной системе хОу (О Ьх) оси х обеих систем параллельны. Обе системы вращаются вместе с ротором. Ротор имеет приведенный момент инерции, определяемый форл улой (62). Под моментом инерции У понимается некоторая постоянная величина, равная моменту инерции покоя изучаемого физического ротора. МомеНт инерции Д/ из формулы (62) может быть найден из анализа рис. 43. Любой элементарный механизм ротора имеет общий центр масс активных подвижных звеньев, перемещение которого, а также перемещение активных подвижных звеньев относительно этого центра определяет величину ДУ. В математическом роторе (см. рис. 43) активные звенья каждого элементарного механизма заменены одним центробежным грузом 1 (следовательно, число грузов в математическом роторе равно числу элементарных механизмов в роторе данного физического толкателя). Для такой замены необходимо, чтобы кинетическая энергия груза 1 в каждый момент времени равнялась кинетической энергии этих звеньев. Согласно теореме Кенига кинетическая энергия последних равна кинетической энергии массы, сосредоточенной в центре масс элементарного механизма, и сумме кинетических энергий всех материальных точек активных подвижных звеньев в движении относительно центра масс. Кинетическая энергия каждого центробежного груза (см. рис. 43) в его движении относительно корпуса 7  [c.119]


Смотреть страницы где упоминается термин Уравнение относительного покоя материальной : [c.22]   
Теоретическая механика в примерах и задачах Том 2 Динамика издание восьмое (1991) -- [ c.0 ]



ПОИСК



Материальная

Материальные уравнения

Уравнение относительного покоя



© 2025 Mash-xxl.info Реклама на сайте