Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полиэтилен применение

Свойства 28, 29, 40, 56, 182, 185, 386 Полихлорвинил — см. Поливинилхлорид Полиэтилен — Применение 41, 84, 109. 215,  [c.246]

Сварка — это процесс создания неразъемного соединения деталей путем местного нагрева их до расплавленного состояния с применением или без применения механического усилия. Сваркой соединяются все марки сталей, чугуна, меди, латуни, бронзы, алюминиевых сплавов и термопластические пластмассы (винипласт, капрон, полиэтилен, полистирол, плексиглас и др.). Соединение деталей сваркой занимает одно из ведущих мест в современной технологии. Сварка более экономична, чем клепка.  [c.121]


В последнее время находят все более широкое применение трубы с защитными покрытиями и, в частности, футерованные полиэтиленом и оцинкованные.  [c.186]

По масштабам производства и разносторонности применения полиолефины заслуженно занимают первое место. Они характеризуются различным молекулярным весом и строением, обладают высокой химической стойкостью, ценными техническими свойствами. Ведущим представителем полиолефинов является полиэтилен.  [c.11]

В антикоррозионной технике широкое применение нашли следующие термопластичные материалы полиэтилен, полиизобутилен, фторопласт, синтетический каучук и другие, а из термореактивных полимеров — пласт-  [c.64]

Область применения полипропилена примерно та же, что и полиэтилена следует, однако, учитывать значительно более низкие холодостойкость и гибкость по сравнению с полиэтиленом.  [c.122]

Полиэтилен применяется в качестве электроизоляционного материала в электротехнике и радиоэлектронике, в кабельной промышленности, в строительстве, в качестве антикоррозионных покрытий и т. д. Полиэтилен всех марок является физиологически безвредным,-поэтому получил широкое применение в производстве товаров народного потребления.  [c.206]

Следовательно, цветные и черные металлы и даже коррозионно-стойкая сталь не могут быть использованы в качестве материалов для ванн из-за осаждения химического покрытия на металлических поверхностях Применение свинца также нежелательно, так как ионы свинца оказывают отрицательное влияние на процесс Поэтому наиболее приемлемыми материалами являются фарфор, эмали стекло, полиэтилен  [c.94]

Пластмассовые конденсаторы по своей конструкции подобны бумажным конденсаторам с той лишь разницей, что диэлектриком в нем служит тонкая пластмассовая пленка, а не бумага. Обычно используют полистирол, полиэтилен и Майлар (полиэтилентерефталат). Низковольтные конденсаторы, как правило, не имеют пропитки или жидкого заполнителя. Однако при высоких напряжениях необходимо заполнение жидкостью для уменьшения влияния коронного разряда и повышения напряжения короткого замыкания [28]. Области применения пластмассовых конденсаторов те же, что и бумажных.  [c.382]

Типичными примерами толстослойных покрытий являются полимерные покрытия и покрытия на основе битумных мастик. Толщина таких покрытий превышает 1 мм. Битумные материалы наносят в расплавленном виде. Покрытие труб полиэтиленом (ПЭ) осуществляется экструзией или с применением клея, обеспечивающего сцепление полиэтилена со сталью, или путем наплавления порошкового полиэтилена [,2, 3]. В последнее время находит применение еще одна система толстослойного покрытия полиуретан — каменноугольный пек это покрытие обычно наносят распылением в виде двухкомпонентной смеси [4]. Основной областью применения толстослойных покрытий являются подземные и морские трубопроводы и подземные резервуары-хранилища. Все покрытия имеют общее назначение — разъединить защищаемую поверхность и коррозионную среду. Полностью разъединить компоненты, участвующие в реакции в среде, в принципе невозможно, поскольку все органические материалы покрытий, хотя и в различной степени, поглощают воду и пропускают водяной пар и кислород. Кроме того, нельзя исключить и возможность механического повреждения покрытий. Основные требования к покрытиям, которые должны обеспечивать длительную защиту от коррозии, сводятся к следующему [5, 6]  [c.146]


Герметичную упаковку с осушителями применяют для таких изделий, габариты, материалы, членение, сложность и склонность к коррозии которых не позволяют пользоваться обычными средствами и методами предварительной защиты. Такой упаковкой защищают в первую очередь различные электротехнические изделия, двигатели, станки и т. д. Принцип защиты заключается в выполнении герметичной упаковки с применением осушителя, который снижает влажность внутри упаковки так, чтобы сделать невозможной атмосферную коррозию. Функция осушителя связана поэтому с используемой упаковкой, которая герметично закрыта и пропускает лишь минимальное количество водяных паров, например полиэтиленом, поливинилхлоридом, коконной оболочкой и т. д. Наиболее распространенными осушителями являются силикагели.  [c.107]

Для производства порошковых эпоксидных красок в основном используются диановые смолы с молекулярной массой 2500—1500, из которых наиболее широкое применение получили смолы Э-49П и Э-20. Для повышения адгезии, улучшения механических и других свойств покрытий в состав эпоксидных порошковых красок вводят добавки других полимеров, таких, как полиэтилен, поливинилбутираль, акрилаты, полиэфиры и полиуретаны.  [c.88]

Полиэтилен. Он представляет собой высокомолекулярный продукт полимеризации этилена. Макромолекулы полиэтилена имеют линейное строение с небольшим числом боковых ответвлений. Полиэтилен — кристаллический полимер при температуре около 293 К степень кристалличности полимера достигает 55—92%. Благодаря своим исключительным свойствам, легкости переработки и широкой сырьевой базе полиэтилен нашел широкое применение как конструкционный материал для изготовления труб, гидроаппаратуры, золотников, вентилей, кранов, различного вида уплотнений. В химической промышленности он применяется для футеровки аппаратов и резервуаров.  [c.51]

В уплотнительной технике фибра, кожа, резина постепенно заменяются композиционными материалами на основе полимеров. Капрон, капролон, полиэтилен работоспособны во многих жидкостных средах. В условиях сухого и полусухого трения, в присутствии соляной кислоты, аммиака, конденсата эффективно применение наполненных фторопластов.  [c.118]

Номенклатура комплектующих изделий и деталей непрерывно расширяется. Объясняется это усложнением конструкций изготовляемых машин (оборудования), форсированием режимов их эксплуатации, повышением нагрузок и рабочих температур, что требует применения соответствующих взаимозаменяемых деталей и узлов производства специализированных заводов. С каждым годом все больше и больше таких изделий заказывают машиностроительные заводы, в результате чего каталоги специализированных предприятий становятся важным спутником официальной стандартизации. На рис. 2 в качестве примера показаны футерованные винипластом или полиэтиленом трубы и тройники, изготовляемые специализированными предприятиями. Применение таких изделий существенно снижает расход нержавеющей стали, повышает долговечность труб и тройников и уменьшает их стоимость.  [c.14]

При применении полимеров, имеющих функциональные группы (поливинилбутираль, эпоксиды) а также полиэтилен, представляется возможным получать структурированные (трехмерные) покрытия с более высокой химической устойчивостью и механическими показателями.  [c.232]

Сварочный процесс с применением электрических горелок выполняется вручную и полуавтоматами. Горелками хорошо свариваются винипласт, полиметил, метакрилат, полиамиды, полиэтилен и т. д. При сварке поливинила статическая прочность соединений встык составляет около 0,75 прочности основного материала при растяжении, ударная вязкость очень низкая, иногда 0,1 от ударной вязкости основного материала.  [c.141]

Полиэтилен — термопластический полимер газообразного этилена. Полиэтилен высокого давления (с малой упругостью) легко формуется и имеет очень широкое применение. Полиэтилен низкого давления (с высокой упругостью) более твердый, прочный, растягивается меньше, труднее формуется, чем полиэтилен высокого давления используется преимущественно для производства слабо нагруженных деталей.  [c.7]

Полиэтиленовые покрытия находят в основном применение в качестве защитных оболочек стальных конструкций (мостов, мачт, резервуаров), транспортных средств (автомобилей, трамвайных и железнодорожных вагонов, судов), химической аппаратуры, труб, изделий из дерева, а также для изолирования электроаппаратуры и проводов. Полиэтилен применяют и как покрытия на бумагу, ткани, алюминиевую фольгу.  [c.89]


Одним из способов модификации свойств резин является совмещение каучуков с пластиками, из которых наибольшее применение в промышленности нашли полиэтилен, полипропилен, полистирол, бутадиен-стирольные смолы и поливинилхлорид.  [c.12]

Полиэтилен высокого давления (ПЭВД) (ГОСТ 16337—77). Это продукт полимеризации этилена, получаемый при высоком давлении в трубчатых реакторах и реакторах с перемешивающим устройством с применением инициаторов радикального типа. Выпускается в виде гранул размером 2-5 мм. Это один из самых дешевых полимеров, обладающий высокими физико-механическими и технологическими свойствами. Он поддается всем видам переработки, свойственным термопластам, относительно прочен, пластичен, является хорошим диэлектриком. Стоек к щелочам и кислотам (серной, соляной и плавиковой), но разрушается в азотной кислоте, хлоре и фторе.  [c.270]

Ботьшинство полимерных материалов получается из низкомолекулярных соединений путем применения двух отличных по принципу методов синтеза. Один из них — с помощью реакции полимеризации, в ходе которой происходит уплотнение одинаковых молекул (например, молекул этилена в полиэтилен). С помощью реакций полимеризации получают синтетические каучуки. Так, бутадиеновый каучук получают по способу С. В. Лебедева из этилового спирта путем сополимеризации бутадиена со стиролом, акрилонитрилом, изобутилена с изопреном и т., д. получают другие разновидности каучуков, обладающие рядом ценных свойств. С помощью реакций сополимериза-цни (сочетание звеньев двух или трех типов различных полимеров) получают также разнообразные виды пластмасс (сополимер винилхлорида с винилацетатом, с. винилидеихлори-дом, сополимер этилена с пропиленом и др.).  [c.389]

Полиэтилен низкого давления, ио сравнению с полиэтиленом высокого давления, об.тадает более высокими прочностными показателями и более высокой химической стойкостью. По этим причинам полиэтилен НД находит большее применение в химическом машиностроении. Физико-механические свойства полиэтилена марок НД и ВД приведены в табл. 48. С повышением температуры прочностные показатели полиэтилена, в особенности предел прочности ири разрыве, снижаются (рис. 248).  [c.420]

Листы из полиэтилена можно сваривать неиоередствепн]чм соединением нагретых листов, без применения присадочного материала, а также но еиособу, аналогичному сварке винипласта с применением сварочных прутков. Полиэтилен можно сваривать также и другими сиоеобами при помощи трения, ультразвука, токами высокой частоты и др.  [c.421]

Существенно отличающимися от проницаемых металлов свойствами обладают пористые полимерные материалы (поропласты) — пористые фторопласт, полиэтилен, полипропилен, полистирол, поливинилхлорид, поливинилформаль и другие [ 25]. Поропласты могут быть изготовлены любой пористости и размера пор (как больше, так и меньше 1 мкм), причем обе эти характеристики довольно точно регулируются. Наиболее важным отличием поропластов являются их ярко выраженные лиофоб-ные свойства, что открывает возможность применения фильтрующих перегородок из таких материа10в для сепарации эмульсий и парожидкостных или газожидкостных смесей в теплообменных устройствах с пористыми элементами.  [c.18]

В электротехнической промышленности нашли широкое применение эпоксидные смолы и его компаунды. Такой полимер применяется в производстве высоковольтных трансформаторов. Замена фарфора указанными смолами снижает габариты трансформ -горов в 2 раза и позволяет сэкономить десятк миллионов рублей. До 1959 г. в злек тротехнической промышленности в качестве изоляцион ных материалов использовались различные ткани пряжа и каучук. Благодаря своим прекрасным электроизоляционным свойствам полиэтилен стал незаменимым материалом для изоляции кабелей. За прошедшее семилетие кабельная промышленность нашей страны получила более 0,5 млн. г пластмасс. Такое количество пластических масс позволило сэкономить около 500 тыс. т свинца, 33 тыс. г хлопчатобумажной ткани и пряжи, 90 тыс. т каучука.  [c.24]

В качестве эластичных материалов в производстве проводов и кабелей и в других случаях находят применение следующие полимеры поливинилхлоридные пластикаты (в качестве основной изоляции и защитных оболочек взамен дефицитного свинца и шланговых резин), полиэтилен (в качестве основной изоляции и защитных оболочек), полиизобутилен (в качестве доба1юк к полиэтилену и каучуку), политетрафторэтилен (в качестве основной изоляции),, полиуретаны. Свойства изоляции проводов и кабелей из этих полимеров находятся в соответствии со свойствами самих полимеров.  [c.214]

Пластические массы (текстолит, гетинакс, стеклотекстолит, древесно-волокнистые пластики, волокнит, винипласт, оргстекло, полиэтилен, пенопласт, эпоксидная смола и многие другие) используются в качестве отделоч1Ных материалов и для различных изделий (трубы, краны, соединительные части, детали интерьеров, машин и конструкций и т. д.). Они получают все более широкое применение 1в машиностроении, строительстве, энергетике и многих других отраслях техники, что делает необходимым изучение основных механических свойств пластмасс и методов определения их главных механических характеристик. Следует иметь в виду, что некоторые механические свойства пластмасс весьм.з сильно изменяются (ухудшаются) под влиянием повышенной температуры, длительных нагрузок, влажности, циклических напряжений и времени. Эти изменения, как правило, необратимы. Для  [c.157]

В ядерной технике широко используются следующие композиционные или псевдокомпозиционные материалы асбест, графит, свинцовистое стекло, бетон, свинец, пластики (полиэтилен) и др. Они находят применение при изготовлении фильтров, прокладок, специальных перчаток, смотровых окон и т. п.  [c.463]


Кабели со слоистой оболочкой имеют жилы с полимерной изоляцией. В качестве полимерного материала может быть применен сплошной или ячеистый полиэтилен. Ячеистый (микропористый) полиэтилен представляет собой вспененный полиэтиленовый материал, имеющий другие электрические свойства, чем сплошной полиэтилен. Поры, образующиеся при вспенивании, иногда заполняют пластичным нефтепродуктом для предотвращения проникновения влаги и недопущения продольной вп-допроницаемости. Эту конструкцию обматывают полимерными лентами и металлической лентой для экранирования. Лента может быть алюминиевой или медной она имеет полимерное покрытие. На металлический экран дополнительно наносят оболочку и защитное покрытие из полиэтилена методом экструзии. Кабели почтового ведомства ФРГ с полимерным покрытием снабжаются тисненой маркировкой. В отличие от поливинилхлорида на полиэтилене можно выполнять только выпуклое тиснение, поскольку выдавливание углублений приводит к возникновению внутренних напряжений, и материал может разрушиться в результате коррозионного растрескивания под напряжением.  [c.300]

Нагрев кабельной линии происходит вследствие не только нагрева токопроводящих жил, но и нагрева изоляции от протекающего в ней тока утечки. Небольшой ток утечки может вызывать значительное выделение теплоты. При напряжениях 345 кВ и выше ток утечки в бумажной изоляции становится недопустимо большим. Поэтому для работы на повышенном напряжении требуется иная изоляция — меньшей толщины и с лучшей теплопроводностью, которая может выдерживать повышенные результирующие напряжения. Такими необходимыми изоляционными свойствами обладают новые синтетические материалы, например милар, полиэтилен или найлон, которые применяются в настоящее время. Исследуется также возможность использования некоторых газов. При применении в качестве изоляции газов потери в диэлектрике существенно снижаются и, как следствие, увеличивается критическая длина кабельных линий. Для напряжения 500 кВ она увеличивается до примерно 880 км по сравнению с 27 км для кабеля с бумажной изоляцией. Газы также лучше проводят теплоту, поскольку в них образуются потоки конвекции, а так как кабели с газовой изоляцией требуют еще и внешней оболочки большего диаметра, то у них образуется большая поверхность теплообмена, соприкасающаяся с окружающим их грунтом. Однако для труб большего диаметра требуется прокладывать и более дорогие траншеи.  [c.236]

Смолы на основе хлорсульфированного полиэтилена — каучукообразного полимера, получаемого при одновременном воздействии на полиэтилен хлора и диоксида серы. Наибольшее практическое применение имеет продукт с молекулярной массой  [c.54]

Бурно развивающаяся нефтехимия создает возможности для широкого развития производства полиолефинов — наиболее массовых, дешевых и высококачественных полимеров. Поскольку полиэтилен высокого и низкого давления, полипропилен и сополимеры этилена и пропилена обладают специфическими для каждого материала свойствами, они имеют самостоятельные области применения. До 1954—1955 гг. производство полиэтилена велось только при высоком давлении. В 1956 г. в НИИ полимеризациоппых пластиков (Ленинград) разработана технология изготовления полиэтилена при низком давлении в присутствии металлорганических катализаторов. В последние годы полимеризацией пропилена получен новый синтетический материал — изотактический полипропилен регулярного кристаллического строения, обладающий повышенной теплостойкостью (рабочая температура до 150°) и высокой прочностью. Из него получают очень цепные пластические массы и синтетические волокна, по прочности превосходящие капрон и найлон. Доступность и дешевизна сырья (пропилена) открывают новому материалу чрезвычайно широкие перспективы применения в машиностроении. Крупное опытно-промышленное производство полипропилена создано на Московском НПЗ (Люберцы).  [c.213]

Продолжение этой прямой в область более низких температур до пересечения с ординатой (20° С) позволяет определить срок службы покрытий для данной среды при 20° С. В качестве примера на рис. 73 показана долговечность защитных полиэтилен-терефталатных и полиэтиленовых покрытий в азотной кислоте и едком натре. Этот метод заслуживает внимания и находит применение при испытании тонкопленочных покрытий любыми полимерами, включая фторопласт.  [c.175]

Диэлектрические свойства. Все пластические массы практически являются диэлектриками (за исключением случая введения специальных наполнителей или применения специальных полимеров). Диэлектрические свойства пластических масс определяются в основном химическим строением и структурой полимерного связующего, а также наполнителем. Наилучшими диэлектриками для высокочастотной техники являются полиэтилен, полистирол, политетрафторэтилен. Тангенс угла диэлектрических потерь этих материалов при 10 гц 0,0002—0,0006, диэлектрическая проницаемость 1,9—2,6 удельное объемное и поверхностное электросопротивление — 10 —10 ом-см (ом), электрическая прочность 20—40 кв мм. Малым тангенсом угла диэлектрических потерь и диэлектрической проницаемостью обладают пенопласты. Хорошие электроизоляционные свойства имеют слоистые пластики и прессмате-риалы с минеральным наполнителем. Лучшими и наиболее стабильными в условиях высокой температуры и повышенной влажности диэлектрическими свойствами обладают пластики на основе кремнийорганических смол и политетрафторэтилена.  [c.14]

Важное значение при составлении порошковых композиций имеет термосветостабилизация полимеров. Введение стабилизатора совершенно необходимо при применении таких полимеров, как поливинилхлорид, полиэтилен, полипропилен, полиформальдегид, из которых в силу значительной термоокислительной деструкции без добавок стабилизаторов не удается получить качественных покрытий вообще.  [c.233]

В зависимости от условий полимеризации и характера катализатора полимер имеет разное пространственное строение. Различают изотактический, синдиотактический и атактический полипропилен. Наиболее ценными свойствами обладает изотактический полипропилен, который и находит применение в технике. Изотактический полипропилен отличается исключительной водостойкостью (практически не поглощает влагу), высокой теплостойкостью (до 150° С) в сочетании с жесткостью и прочностью, прекрасной ударной вязкостью, хорошей химической стойкостью, низким коэффициентом линейного расширения, устойчивостью к старению. По теплостойкости, пределу прочности при растяжении, удельной ударной вязкости и водопоглощению значительно превосходит полиэтилен и поливинилхлорид.  [c.258]

Наиболее рациональной арматурой для химцехов электростанций является чугунная или углеродистая с противокоррозионным покрытиел (фторопласт, полиэтилен и др.). В качестве привода целесообразно применение пкевматического или гидравлического. В связи с тем, что заводы еще не наладили серийный выпуск надежно работающей арматуры с указанными приводами, в настоящее время наиболее надежным является электропривод, хэгя его стоимость выше, чем других приводов.  [c.40]

Капельная конденсация изооктана, изогектана и циклогексана на меди обеспечивается применением в качестве лиофобизатора фторированных кислот и силиконовых смол. Срок службы лиофобизатора не превыщал 1 ч. Указываются другие вещества (политетрафторэтилен, полиэтилен и др.), обеспечивающие конденсацию органических веществ.  [c.142]

Для защиты деталей проточного тракта гидротурбин от кавитационной эрозии неоднократно предпринимались попытки применения неметаллических поверхностных покрытий. В качестве защитных покрытий исследовались эпоксидные компаунды полиизобутилен, полиэтилен, стеклопластик, резина, капрон, ситалл, найрит и другие материалы, наклеенные или напыленные на сталь. Исследования показали, что наиболее перспективными являются резины и другие каучукоподобные полимеры. Например, в США интенсивно проводятся работы по гуммированию судовых гребных винтов жидкими синтетическими каучуками (неопренами), в результате чего была повышена их износостойкость [Л. 21].  [c.30]


В качестве материача для изготовления рабочих органов вибрационных машин чаш,е используют конструкционные или низколегированные стали Сплавы алюминия и большая часть пластмасс для применения в вибрационных машинах не рекомендуются эластомеры, резину, полиэтилен и т п можно применять лишь для защиты от износа, коррозии и для неответственных деталей  [c.143]


Смотреть страницы где упоминается термин Полиэтилен применение : [c.183]    [c.359]    [c.35]    [c.204]    [c.67]    [c.17]    [c.121]    [c.16]    [c.234]    [c.156]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.398 ]



ПОИСК



Полиэтилен

Полиэтилен высокой плотности (низкого давления) — Применение 33 Свойства

Полиэтилен высокой плотности (низкого давления) — Применение 33 Свойства давления) — Применение 33 — Свойства

Полиэтилен высокой плотности (низкого давления) — Применение 33 Свойства среднего давления — Применение 33 — Свойства

Полиэтилен, его свойства и применение



© 2025 Mash-xxl.info Реклама на сайте