Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Масштабный закон

Основные результаты, полученные для упругого рассеяния, были сформулированы в виде следующего соотношения для форм-факторов (так называемый масштабный закон)  [c.276]

Масштабный закон 276 Мезонная теория 9, 13, 18 Мезонное облако 10, 13, 17 Мезонный заряд 13 Многократное кулоновское рассеяние 131 Монте-Карло метод 211 Мю ( х)-мезоатом 116, 117 Мю ( х)-мезоны (см. мюоны) Мюонные нейтрино и антинейтрино 252, 113  [c.334]


Параметры механически эквивалентного распределения дефектов можно определить по средней прочности и стандартному отклонению при помощи методов статистики экстремальных оценок, дающих масштабные законы, описание которых приведено в разд. И. На самом деле необходимы некоторые сведения относительно того, распределены ли ограничивающие прочность дефекты только по поверхности или они встречаются равномерно по объему. Кроме того, заметим еще раз, что необходимы подтверждения того, что процессы изготовления моделей и прототипов почти не отличаются и при изготовлении прототипа не возникают новые распределения дефектов.  [c.178]

Масштабный закон 106 Мезонная теория 12, 16 Мезонное облако И Мезонный заряд И Метод Монте-Карло 305, 344 —недостающей массы 245  [c.384]

Проведенный анализ подтверждает универсальность и масштабную инвариантность закона золотой пропорции, выраженную в виде функции самоподобия (3.1).  [c.198]

Это есть выражение закона подобия Ньютона в масштабных множителях.  [c.331]

Закон изменения координат х, у с то шостью до масштабных коэффициентов 1у совпадает с законом анализа изображения в проектируемом ОЭП  [c.17]

В результате с помощью (9.18) и (9.20) находим искомые выражения для потенциалов отраженных волн. Отметим, что при отыскании решения задачи об отражении плоской продольной волны от свободной границы полупространства предполагалось, что отраженные волны описываются той же функцией f Q), что и падающая волна. Эта функция описывает профиль падающей волны. Как следует из решения (9.20), существуют отраженные волны того же профиля. Если поместить наблюдателя (прибор) в некоторой точке (х,у) полуплоскости, через которую пройдут в соответствующие моменты времени tip, hp, 28 падающая продольная и отраженные продольная и поперечная волны соответственно, то наблюдатель сможет зарегистрировать изменение возмущения (перемещения, деформации или напряжения) во времени в каждой из этих волн по закону /( ) для отраженных волн проявится влияние амплитуд А я В, которые входят в масштабный коэффициент по оси ординат на  [c.435]

Что такое масштабные множители Запишите закон подобия Ньютона в масштабных множителях.  [c.309]

Нетрудно видеть, что закон вырождения турбулентного движения определяется существенным образом только одной постоянной а, так как Ь и I играют роль масштабных постоянных, а постоянная t зависит только от начала отсчёта времени.  [c.152]


Закон самоподобия (4.41) указывает на возможность использования набора единичных приращений усталостной трещины для расчета ее длины путем введения нелинейной меры в виде фрактальной характеристики рельефа излома. Вариация набора указанных законом самоподобия (4.41) реализуемых в процессе роста трещины величин приращений приводит к рассеиванию длительности ее роста при близких значениях длины в проекции на горизонтальную ось. Путь трещины в пространстве будет тем более извилистым, чем большее изменение приращений трещины в направлении ее роста происходит вдоль фронта трещины (рис. 5.6). Это свидетельствует о существовании обратной зависимости между величиной фрактальной размерности и осредненной на масштабном макроскопическом уровне скоростью роста усталостной трещины.  [c.260]

В разд. Е мы рассмотрим некоторые приближенные формулы для прочности слоистого композита. Законы масштабного изменения прочности при переходе от модели к прототипу можно, однако, получить из точного уравнения (30) для напряжения разрушения без знания этих приближенных соотношений. Логарифмическое дифференцирование уравнения (31) для случая большого числа N параллельных элементов снова приводит к простому соотношению (32а), хотя значение п = L/8 также увеличивается с увеличением размера. Заметив, что безразмерное напряжение s включает в себя произведение ширины отдельных элементов w (толщина слоистого композита) на а и что N — где W — общая  [c.194]

Результаты вычислений вероятности полного разрушения системы при различных вариантах размещения защитных подсистем (табл. 3 ) по масштабным уровням представлены в табл. 4. Следует отметить, что при этом величины воздействий и параметров защиты изменяются по линейному закону в зависимости от номера уровня.  [c.15]

А. С. Проников разработал способы повышения долговечности и методы ее расчета для деталей и сопряжений металлорежущих станков. Предложенные им методы расчета позволяют определить формы изношенных поверхностей (распределение износа на рабочих поверхностях), время изнашивания, а также сроки службы различных групп деталей и сопряжений станков. Для проведения этих расчетов помимо геометрических, масштабных, кинематических н динамических параметров машин и их деталей должны, быть известны законы изнашивания сопряжений. Однако эти законы пока с достаточной достоверностью установлены лишь опытным путем для некоторых конкретных сопряжений. Общие законы для различных видов изнашивания и широкого диапазона условий трения еще должны быть изысканы и установлены.  [c.99]

Позиционные коэффициенты позволяют свести бесконечное разнообразие частных механизмов к ограниченному числу единичных, для которых геометрические, кинематические и динамические зависимости выражаются в относительных единицах идентично. Возникает возможность сравнивать единичные механизмы и выбирать присущие им законы движения оптимальными. При конструировании же конкретного механизма нужно выбранные и выраженные в относительном единичном масштабе зависимости только перевести с помощью соответствующих масштабных множителей в конкретные размерные величины.  [c.30]

Методика расчета параметров схемы модели не представляет особых затруднений и сводится к следующему [162]. Зная максимальные значения потенциала V , который подается на модель, и функции 0 (соответствует максимальной температуре среды), можно определить масштабный коэффициент те = VJQ . Далее, по формуле (Х.18) и по имеющейся зависимости а = /(т) определяется закон изменения  [c.131]

МАСШТАБНАЯ инвариантность (скейлинг) — свойство неизменности ур-ний, описывающих нек-рую физ. теорию или к.-л. физ. процесс, при изменении всех расстояний и промежутков времени в одинаковое число раз. Такие изменения образуют группу масштабных преобразований (называемых также преобразованиями подобия), определяемую след, законом изменения координат пространства и времени  [c.60]

Существует бесконечный набор локальных неприводимых операторов Л (х), к-рые получаются из <р1 х), грубо говоря, возведением в степень и дифференцированием по координатам х и к-рые преобразуются при масштабном преобразовании в соответствии с законом (1). Критич. показатели Дд зависят от размерности пространства й, от числа компонент п параметра порядка, от конкретного вида оператора Л (х), но не зависят от структуры вещества на межатомных расстояниях.  [c.62]


Когда кривая спектрал энергии тела, обладающей лучения, подобна кривой излучение первого назыв коэффициенты е(2, Т)=е = сопз1 играют роль масштабного множителя при сравнении серого излучения с излучением абсолютно черного тела при той же температуре (рис. 1-5). Значения Ямакс для черного и для серого тел равны. Введение понятия серое тело значительно расширяет возможности использования законов излучения, сформулированных для абсолютно черного тела, в практических расчетах, что доказывают, например, (1-19) —(1-21).  [c.19]

За начальное примем положение ползуна, соответствующее точке До па рис. 4.2. Перемещение ползуна от этой точки обозначим X. Полагая, что кривошип АВ вращается с постоянной угловой скоростью О) по часовой стрелке, значение угла р его поворота будет откладываться по оси абсцисс, как показано на рис. 4.3, а. За начальную точку принято положение привошипа Я, . По оси ординат для соответствующего угла ср/ будем откладывать расстояние Х , которое измеряют по схеме положений механизма (см. рис. 4.2). Соединяя плавной кривой полученные точки, получаем график перемещения х ползуна в зависимости от угла р поворота кривошипа, или закон перемещений ползуна. Чтобы найти истинные значения перемещения х ведомого звена, надо умножить значения длин отрезков х на масштабный коэффициент = [А .  [c.37]

Изложенные рассуждения иллюстрируют происхождение основных закономерностей процесса бесконечное множество бифуркаций, моменты появления которых сходятся к пределу Лоо по закону (32,9—10) появление масштабного множителя а. Полученные при этом значения характерных констант, однако, не точны. Точные значения (полученные путем многократного компьютерного итерирования отображения (32,5)) показателя сходимости б число Фейгенбаума) и масштабного множителя а  [c.175]

Масштабный множитель а определяет изменение — уменьшение— геометрических (в пространстве состояний) характеристик аттрактора на каждом шаге удвоений периода этими характеристиками являются расстояния между элементами предельных циклов на оси х. Поскольку, однако, каждое удвосиие сопровождается еще и увеличением числа элементов цикла, это утверждение должно быть конкретизировано и уточнено. При этом заранее ясно, что закон изменения масштаба не может быть одинаковым для расстояний между всякими двумя точками ). Действительно, если две близкие точки преобразуются через почти линейный участок функции отображения, расстояние между ними уменьи1ится в а раз если же преобразование про-  [c.177]

Масштабная инвариантность в теории фазовых переходов 2-го рода. Эти переходы разбиваются на неск. классов, эквивалентности, причём в рамках одного класса особенности термодинамич. величин в совершенно разл. системах описываются одними и теми же степенными законами. Так, наир., изотропные ферромагнетики, антиферромагнетики и сегнетоэлектрики попадают в один класс эквивалентности, а критические точки жидкость — пар, двухкомпонентные растворы, изин-говский ферромагнетик — в другой.  [c.61]

Флуктуации М. ф. и. Обнаружение небольших различий в интенсивности М. ф. и., принимаемого от разных участков небесной с ры, позволило бы сделать ряд выводов о характере первичных возмущений в веществе, приведших в дальнейшем к образованию галактик и скоплений галактик. Совр. галактики и их скопления образовались в результате роста незначительных по амплитуде неоднородностей плотности вещества, существовавших до рекомбинации водорода во Вселенной (см. Первичные флуктуации во Вселенной). Для любой космологич. модели можно найти закон роста азиплитуды неоднородностей в ходе расширения Вселенной. Если знать, каковы были амплитуды неоднородности вещества в момент рекомбинации, можно установить, за какое время они могли вырасти и стать порядка единицы. После этого области с плотностью, значительно превышающей среднюю, должны были выделиться из общего расширяющегося фона и дать начало галактикам и их скоплениям (см. Крупно-масштабная структура Вселенной). Рассказать об амплитуде начальных неоднородностей плотности в момент рекомбинации может лишь реликтовое излучение. Поскольку до рекомбинации излучение было жёстко связано с веществом (электроны рассеивали фотоны), то неоднородности в пространственном распределении вещества приводили к неоднородностям плотности энергии излучения, т. е. к различию темп-рнг излучения в разных по плотности областях Вселенной. Когда после рекомбинации вещество перестало взаимодействовать с излучением я стало для него прозрачным, М. ф. и. должно было сохранить всю информацию о неодв одностях плотности во Вселенной в период рекомбинации. Если неоднородности существовали, то темп-ра М. ф. и. должна флуктуировать, зависеть от направления наблюдения. Однако эксперименты по обнаружению ожидаемых флуктуаций пока не дали измеримых значений. Они позволяют показать лишь верх, пределы значений флуктуаций. В малых угл. масштабах (от одной угл. минуты до шести градусов дуги) флуктуа-  [c.134]

В среде, обладающей аксиальной симметрией относительно выделенного направления при определённой масштабной инвариантности закона дисперсии и матричного элемента трёхволнового взаимодействия, а именно  [c.678]

Важными следствиями масштабной инвариантности (с Л= /з) в инерц. интервале являются структурная ф-ция порядка р, определённая как среднее от р-й степени разности скоростей Ли,, измеренных в точках, отстоящих на расстояние /, степенным образом зависит от этого расстояния спектральная плотность энергии Т., определяемая Фурье преобразованием структурной ф-ции второго порядка, удовлетворяет закону = где к — волновое число, а с—постоянная Колмогорова (скейлинг не определяет величины этой константы) вихревая вязкость на масштабе / определяется соотношением  [c.180]


Смотреть страницы где упоминается термин Масштабный закон : [c.200]    [c.342]    [c.105]    [c.133]    [c.260]    [c.157]    [c.487]    [c.145]    [c.89]    [c.15]    [c.321]    [c.101]    [c.88]    [c.480]    [c.60]    [c.62]    [c.170]    [c.599]    [c.678]    [c.148]    [c.623]   
Смотреть главы в:

Экспериментальная ядерная физика. Т.2  -> Масштабный закон

Экспериментальная ядерная физика Кн.2  -> Масштабный закон


Экспериментальная ядерная физика. Т.2 (1974) -- [ c.276 ]

Экспериментальная ядерная физика Кн.2 (1993) -- [ c.106 ]



ПОИСК



Масштабный



© 2025 Mash-xxl.info Реклама на сайте