Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точность деталей, сопряженных с подшипниками качения

Примечания 1. Допуски на радиусы и фаски приняты по 7-му классу точности в зависимости от размера D за исключением размера г (с) == 0,4, для которого допуск принят по 5-му классу. 2. Допускаемые отклонения на сопряженные радиусы и ф ски на чертежах, как правило, проставляются. 3. Нормально фаска снимается под углом 45 . 4. При сопряжениях с подшипниками качения радиусы закруглений и фаски следует выбирать из ГОСТа на шарико- и роликоподшипники. 5. Входные фаски для деталей, соединяемых при неподвижных посадках, см. в табл. 49.  [c.578]


Величина допусков на их посадочные диаметры О и с зависит от интервала размеров и класса точности подшипников и не зависит от посадки поле допуска наружного диаметра О направлено в тело наружного кольца, а внутреннего диаметра ё в отверстие (рис. 295), т. е. в обоих случаях поля допусков расположены ниже нулевой линии требуемый характер сопряжения обоих колец достигается обработкой вала и отверстия в корпусе по отклонениям выбранной посадки таким образом, для сопряжения подшипников качения с деталями механизмов приняты по наружному кольцу — система вала (СВ), по внутреннему кольцу — система отверстия (СА).  [c.438]

Нагрев в масляной ванне производится при сопряжении деталей 2 класса точности с небольшими натягами. Особенно часто этот способ используется при надевании на валы внутренних колец подшипников качения и других деталей, прошедших термическую обработку. Конструкция бака для нагрева масла показана на фиг. 73. Масло подогревают снизу паровым или электрическим нагревателем. Более надежна конструкция бака с  [c.145]

К подвижным конусам относятся центровые конуса (центра), применяемые для подвижных соединений при относительно небольших нагрузках и обеспечивающие высокую точность центрирования и долговечность, так как износ рабочих поверхностей регламентируется осевым смещением сопряженных деталей конуса в подшипниках трения скольжения с гарантированным регулируемым зазором по всей длине или по длине облегченной конической поверхности конусы режущей части инструментов, например разверток, сверл и др., для образования конических отверстий в различных деталях конические ролики подшипников трения качения с особым видом посадки по наружному и внутреннему конусам колец подшипников.  [c.125]

Посадки назначают из расчета или из опыта в соответствии с условиями работы и сборки сопряжения, а также требованиями к точности. Наиболее распространенной является система отверстия — сокращается номенклатура дорогих инструментов для отверстия. Систему вала применяют при технологической целесообразности использования гладких валов, сопряженных с деталями с различными посадками, при применении стандартных деталей с охватываемой поверхностью (внешние кольца подшипников качения и ДР-).  [c.242]


В связи со сказанным ГОСТ 3325—55 устанавливает для соединения подшипников качения с валами и корпусами машин и механизмов следующие посадки для тонкостенных корпусов — Pj (взята из системы посадок ИСО) глухая подшипниковая — Гп и Гш, тугая подшипниковая — Тп и Тш, напряженная подшипниковая — Нп и Hin, плотная подшипниковая — Пц и Пщ, скользящая подшипниковая — Сщ, Сп и Сзп, движения подшипниковая — Дп и Дш и ходовая подшипниковая — Хп. Индекс п обозначает, что посадка подшипниковая, и тем самым отражает указанные выше особенности этих посадок в связи с особым расположением полей допусков основных деталей. Цифра указывает на класс точности изготовления сопряженной детали (вала или корпуса) при применении соответствующей посадки.  [c.94]

Требования к точности деталей, сопряженных с подшипниками качения. Отклонения размеров и формы сопряженных с подшипниками поверхностей деталей шпиндельного узла не должны превышать допустимых отионений, установленных для того элемента подшипника, с которым контактирует данная деталь. Это означает, что некруглость шеек шпинделя и посадочного отверстия в корпусе не должна превышать допуска на разностенность колец подшипника, отклонение конусности шейки шпинделя — допуска на угол уклона отверстия внутреннего кольца, непараллельность и неперпендикулярность торцовых базирующих поверхностей — допуска на непараллельность и неперпендикулярность торцов подшипника к образующей дорожек качения.  [c.365]

Повышение геометрической точности путем внедрения высокожестких направляющих качения, гидро- и аэростатических направляющих прямолинейного и кругового перемещений, сверхпрецизионных радиальных и осевых опор качения новых конструкций для шпинделей, а также гидродинамических, гидростатических и аэростатических опор, применения винтовых пар качения и гидростатических винтовых пар в последних звеньях кинематических цепей механизмов подач. Повышается также точность изготовления деталей, сопряженных с подшипниками.  [c.59]

Точность изготовления колец подшипников качения классов точности Н, П и В по пpи oeдиниteльньш размерам Ь и й близка к точности изготовления валов и отверстий 1-го класса точности. Для классов точности А и С точность изготовления подшипников еще выше. Точность изготовления колец по ширине Ь соответствует точности изготовления валов (охватываемых деталей) между 3-м и 4-м классами точности. Контрдетали, т. е. корпусы и валы, для сопряжения с подшипниками нормальной точности изготовления выполняют обычно по 2а и 2-му классам и очень редко по 3-му классу точности.  [c.453]

После эскизной проработки конструкции вала и сопряженных с ним деталей передач подбирают подшипники качения. Конструкция и качество опор определяются типом подшипников, схемой их установки и способом крепления в корпусе и на валу. Это, в свою очередь, зависит от условий работы — величины, направления и характера нагрузки, длины и жесткоста вала, вида смазки, защиты от загрязнения точности изготовления деталей и корпуса (соосности отверстий), качества монтажа, необходимости регулировки и демонтажа подшипников ресурса (срока службы) подшипников до замены экономичности, стоимости подшипников и опор в целом. Все это позволяет выбрать тип подшипников и конструктивно оформить опоры.  [c.279]

Стандартизация допусков на выходные параметры изделий Стандартизация решает многие вопросы, связанные с оценкой и повышением надежности изделий и регламентацией методов их производства, эксплуатации и испытания. Особое место с позиций расчета, прогнозирования и достижения необходимого уровня надежности занимают стандарты, которые регламентируют значения выходных параметров материалов, деталей, узлов и машин и устанавливают классы изделий, отличающиеся по показателям качества. Так, установление классов (степеней) точности (квали-тетов) при изготовлении деталей является регламентацией геометрических параметров изделия, классы шероховатости (ГОСТ 2789—73) разделяют все обработанные поверхности на категории по геометрическим параметрам поверхностного слоя. Стандарты и технические условия на различные марки материалов устанавливают предельные значения или допустимый диапазон изменения их механических характеристик — предела прочности, текучести, усталости, относительного удлинения, твердости и др. Стандарты устанавливают также значения для выходных параметров отдельных деталей сопряжений и механизмов (например, запас прочности конструкций, точность вращения подшипников качения), узлов, систем и машин. Так, например, имеются классы точности для металлорежущих станков, регламентированы тяговые усилия и КПД двигателей, уровень вибраций и температур для ряда машин и т. п. Эти нормативы являются необходимым условием для оценки параметрической надежности изделий и определяют исходные данные при прогнозировании поведения машины в различных условиях эксплуатации.  [c.426]


На рис. 6.37, а приведена схема, в которой подшипник качения базируется по торцу кольца 2, упирающегося в торец детали 1 (зубчатое или червячное колесо). Деталь 1 установлена на валу без зазора. Так как ступица этой детали относительно длинная, основной базой для нее является цилиндрическая поверхность сопряжения с валом. Кольцо 2 относительно короткое Ud < 0,8), и основные базы для него — торцы. Точность базирования подшипника зависит от параллельности Yj торцов кольца и перпендикулярности 7г торца Б детали 1 к оси отверстия. В этом случае диаметр ступицы der детали I значительно больше диаметра кольца 2 и внешнего диаметра внутреннего кольца прдшип ника, поэтому коэффициенты i = 1,0 С = djd -  [c.201]

Класс точности 2 используется в ответственных соединениях, где предъявляются высокие требования к посадкам в отношении их определенности и к деталям с точки зрения обеспечения полной взаимозаменяемости. Этот класс точности имеет самое широкое распространение (например, п0дш1ипники скольжения, подшипники качения, детали редукторов, большинство сопряжений в боевой и приемной коробках станков СТБ, в швейных машинах и т. д.).  [c.61]

Как следует из приведенных формул, наибольшее влияние на точность исходного размера оказывают погрешности подшипников опоры 2 (см. рис. 5.8), стакана и посадочной поверхности вала для подшипников, а также зазоры в сопряжениях деталей этой опоры С = ( 1 + /гХ/ а- В связи с этим для. уменьшения радиального биения вала наиболее эффективно уменьшение допусков на размеры, относящиеся к опоре 2. В некоторых случаях целесообразно устанавливать подшипники таким образом, чтобы смещения центров дорожек качения наружных колец располагались на одной образующей вала. Кроме того, внутренние кольца подшипников можно устанавливать так, чтобы направления сме-щейия центров дорожек качения располагались на одной образующей вала, противоположной по направлению погрешности размера Pj. При таких условиях радиальное биение базовой поверхности выступающего конца вала минимально, поскольку векторные погрешности превращаются в скалярные 9 = 0 и os 9 = 1.  [c.133]


Смотреть страницы где упоминается термин Точность деталей, сопряженных с подшипниками качения : [c.645]    [c.25]    [c.493]    [c.325]   
Краткий справочник цехового механика (1966) -- [ c.365 ]



ПОИСК



I сопряженные

Детали Точность

Детали подшипников

Подшипники качения

Точность подшипников качения



© 2025 Mash-xxl.info Реклама на сайте