Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Близкодействие

Согласно представлениям теории близкодействия, взаимодействие электрических зарядов q и Q2 есть результат действия  [c.132]

Количественное выражение электростатического взаимодействия в теории дальнодействия и в теории близкодействия имеет один и тот же вид (закон Кулона). Поэтому на основе изучения законов электростатики нельзя сделать обоснованный выбор между этими двумя теориями.  [c.132]


Теорема о кинетической энергии 45 Теория близкодействия 132  [c.364]

Следует отметить, что значения Е и Н в момент времени t в точке 0 х,у,2) определяются значением р в более ранний момент времени t — г/с. Время г/с необходимо для того, чтобы излучение диполя дошло от точки О до О. Близкодействие, на котором основывается электромагнитная теория Максвелла, здесь очевидно.  [c.56]

Одним ИЗ кардинальных вопросов теории является описание взаимодействия между заряженными частицами. Мало сказать, что заряды отталкиваются или притягиваются, необходимо предложить механизм этих взаимодействий. В нем должны учитываться требования концепции близкодействия, согласно которой любое взаимодействие распространяется с конечной скоростью, не превышающей скорости света. Теория физического вакуума позволила найти решение этой задачи.  [c.178]

В теории упругости, рассматривающей явления, происходящие при возникновении напряжений, межатомные силы принимаются близкодействующими, и поэтому силы, действующие на какую-либо часть тела со стороны других, действуют непосредственно только через поверхность тела. Эти силы пропорциональны площади поверхности тела, и их величина, отнесенная к единице площади, называется напряжением. Напряжение называется однородным, если силы, действующие на поверхность элемента  [c.187]

В своей работе Умов перевел общие разговоры о близкодействии на язык конкретных понятий и зависимостей. Он сформулировал представления о локализации  [c.152]

Изменение коэрцитивной силы и термоэдс при деформации. Согласно закону магнитострикции Акулова, должна существовать связь между плотностью дефектов решетки и магнитными параметрами, в частности коэрцитивной силой. Для никеля доменные стенки характеризуются близкодействующими полями, поэтому изменение коэрцитивной силы будет определяться линейной плотностью дислокаций  [c.156]

Близкодействующие силы простираются на малые расстояния и могут преодолеваться при низком уровне внешнего напряжения с помощью термических или квантовых флуктуаций. С ними связана термическая часть напряжения течения (х ). К этим силам относятся силы Пайерлса — Набарро, силы сопротивления, создаваемые точечными дефектами, лесом дислокаций, малыми комплексами точечных дефектов и т. д.  [c.79]

При исследовании систем, находящихся вдали от состояния равновесия, неожиданно обнаруживается зависимость между кинетикой идущих в системах химических реакций и их пространственно-временной структурой. Конечно, верно, что взаимодействия, определяющие величины констант скоростей химических реакций и параметров переноса, в свою очередь определяются величинами близкодействующих сил (имеются в виду валентные связи, водородные связи, силы Вап-дер-Ваальса). Тем не мепее решения кинетических уравнений зависят, кроме того, и от глобальных характеристик. Эта зависимость, тривиальная для термодинамической ветви вблизи равновесия, для химических систем, находящихся в условиях, далеких от равновесных, становится определяющей. Например, диссипативные структуры, как правило, возникают лишь в таких системах, размеры которых превышают некоторые критические значения. Значения этих критических величин являются сложной функцией параметров, определяющих идущие в системе химические реакции и диффузию. Поэтому мы можем сказать, что химические нестабильности сопряжены с упорядочением па больших расстояниях, благодаря которому система функционирует как единое целое.  [c.137]


В основу исследования в этих работах был положен принцип близкодействия, заключающийся в предположении, что отделение (или присоединение) масс происходит мгновенно и дальнейшего влияния на движение системы эти массы не оказывают, а эффект отделения учитывается дополнительной реактивной силой.  [c.12]

ЛОКАЛЬНОЕ ВЗАИМОДЕЙСТВИЕ — реализация физ. принципа близкодействия в теории полей (и частиц).  [c.605]

На пути движущихся дислокаций могут встретиться барьеры, создающие близкодействующие (распространяющиеся на несколько межатомных расстояний) и дальнодействующие (распространяющиеся не менее чем на 10 межатомных расстояний) на-  [c.296]

Принцип близкодействия, используемый в механике тел нере-мериюй массы, состоит в том, "что процесс присоединения или удаления частиц, изменяющих массу, происходит мгновенно при этом частица либо мгновенно приобретает связь (масса увеличивается), либо ее теряет (масса уменьшается). Нанрнмер, для случая присоединения массы, исходя из этого принципа, уравнение движения точки с переменной массой записывают в виде уравнения И. В. Мещерского  [c.364]

Внутренние напряжения обусловливаются молекулярными силами, т. е. силами взаимодействия молекул тела друг с другом. Весьма существенным для теории упругости является то обстоятельство, что молекулярные силы обладают очень незначительным радиусом действия. Их влияние простирается вокруг создающей их частицы лишь на расстояниях порядка межмолеку-лярных. Но в теории упругости, как в макроскопической теории, рассматриваются только расстояния, большие по сравнению с межмолекулярными. Поэтому радиус действия молекулярных сил в теории упругости должен считаться равным нулю. Можно сказать, что силы, обусловливающие внутренние напряжения, являются в теории упругости силами близкодействующими , передающимися от каждой точки только к ближайшим с нею. Отсюда следует, что силы, оказываемые на какую-нибудь часть тела со стороны окружающих ее частей, действуют только непосредственно через поверхность этой части.  [c.13]

Различают две формы силового взаимодействия материальных тел близкодействие и дальнодействие. Под первым пон1[-мают взаимодействие, осуществляемое путем непосредственного контакта тел, под вторым — результат взаимодействия тел с физическими полями (тяжести, тяготения, электрическим и магнитными), по отношению к которым находятся в равновесии или движутся материальные тела.  [c.10]

Еиения 151, 152 Бинормаль кривой 185, 259 Близкодействие 10 Блок идеальный 34  [c.346]

Межузельные атомы и вакансии являются в кристалле центрами локального упругого расширения или сжатия кристаллической решетки (рис. 12). Напряжения и реформации вокруг такого центра убывают обратно про-торционально третьей степени расстояния от него. Залетные смещения атомов создаются на расстоянии од-юго —двух атомных диаметров. Быстрое затухание 1Т0МНЫХ смещений при удалении от центра точечного 1ефекта свидетельствует о том, что поля напряжений . десь близкодействующие.  [c.27]

ТЕОРИИ УПРОЧНЕНИЯ ПОЛЯМИ БЛИЗКОДЕЙСТВУЮЩИХ НАПРЯЖЕНИИ. Согласно теории Гилмана за движущейся дислокацией остаются дислокационные диполи (рис. 128), представляющие собой две параллельные дислокации противоположного знака. Дислокационные диполи, существование которых подтверждено электронномикроскопическими исследованиями, взаимодействуют с последующими дислокациями, поэтому движение последующих дислокаций затрудняется. Чем больше величина деформаций, тем больше остается диполей и труднее продвижение дислокаций.  [c.213]

Особенность барьерного упрочнения заключается в том, что границы зерна создают действующие на дислокацию силы близкодействия. Коттрелл и Мак Лин приводят расчеты Джесвона и Формэна, согласно которым единичная дислокация в результате воздействия касательного напряжения, равного 10 G, располагается от границы зерна на расстоянии пяти атомных диаметров. Необходимо иметь в виду, что у границы зерна на дислокацию действует две противоположно направленные силы. С одной стороны, она притягивается к границе, так как атомы на границе далеки от упорядочения, и энергия несоответствия границы изменится не намного, если в границу вольются искажения, имеющиеся у цент-  [c.226]


Некоторые теории объясняют деформационное упрочнение полями близкодействующих напряжений [238, 239]. Например, Базинский [238] связывает упрочнение с упругим взаимодействием дислокаций, движущихся в данной плоскости скольжения, и лесом дислокаций, пересекающих эту плоскость (рис. 3.1, в). При этом напряжение течения  [c.99]

К теориям упрочнения близкодействующими полями упругих напряжений относят и теории, связывающие деформационное упрочнение с торможением дислокаций вследствие образования на них ступенек (порогов) в результате взаимного пересечения [240, 241]. Так, в модели Мотта [240] и Хирща [241] (рис. 3.1, ), которая уточняет теорию Тейлора, сопротивление движущейся дислокации определяется пе прямым взаимодействием с другими дислокациями, а образованием ступенек при пересечении с дислокациями леса. Во многих случаях ступеньки способны двигаться вместе с дислокацией, но для винтовых дислокаций неконсервативное движение ступенек вместе с дислокационной линией должно приводить к образованию вакансий или меж-доузельных атомов, .  [c.100]

Развивая идею близкодействия, Фарадей ввел представление о магнитных силобых линиях, обнаружив их  [c.112]

Максвелл дал математическую интерпретацию экспериментальным результатам Фарадея на основе принципа близкодействия — механических движений во всепроникающем эфире. Наделив частицы эфира множеством особых свойств и движений, он, однако, не рассматривал их как физическую реальнос1ь — это была лишь анало-  [c.113]

В уровень внутренних напряжений в нанокристаллах, имеющих размер зерен в несколько десятков нанометров, могут давать вклад не только линейные дефекты. Было, например, показано, что напряжения, вызванные поверхностным натяжением, могут вызывать значительные напряжения в наноструктурном Pd [83]. Близкодействующие поля точечных дефектов также важны в случае очень маленьких размеров зерен [118]. Следовательно, можно ожидать, что избыточная энергия скомпактированных нанокристаллов может иметь иную природу, чем в материалах, полученных методом ИПД. Однако этот вопрос требует дальнейщих исследований.  [c.113]

В рамках гипотезы о близкодействии [9] предполагается, что присоединение или отбрасывание материальных частиц происходит непосредственно с поверхности ротора, а главный момент всех активных и реактивных сил, приложенных к нему, зависит от времени и угловой скорости ротора. С помощью принципа Даламбера составляются основные уравнения для определения дополнительных динамических реакций и находятся их явные выражения через инерционные параметры, угловую скорость и угловое ускорение ротора. Устанавливаются условия суш,ествования предельных угловой скорости, углового ускорения и дополнительных динамических реакций, имек1щих наибольшее прикладное значение в динамике роторов.  [c.10]

В зависимости от масштабности действия создаваемые препятствиями силы торможения дислокаций делятся на два типа [43] даль-нодействующие и близкодействующие (рис. 21).  [c.78]

Температурная зависимость предела текучести облученных металлов. Для температурно-зависимого упрочнения Я и У являются в основном функциями эффективного напряжения, и каждый процесс термически активированной деформации имеет характерные параметры активации с особыми зависимостями от напряжения. Дорн [51] рассмотрел несколько моделей преодоления дислокациями препятствий, определяющих температурную зависимость напряжения течения металлов равномерное увеличение напряжения течения во всем температурном интервале, т. е. поступательный подъем кривой без изменения величины То, изменение температурного коэффициента напряжения течения (АаМТ) в области Т Т(, без изменения величины То, что наблюдается при повышении только плотности близкодействующих барьеров изменение или сохранение значения (Да/ДТ) при Т < То с повышением величины То при испытаниях образцов с различной скоростью или росте прочности близкодействующих барьеров.  [c.86]

Термодинамика тела переменной массы имеет глубокую аналогию с механикой тела переменной массы, что, в частности, нашло свое выражение в правомерности понятия тело переменной массы , в сходстве анализа природы добавочных (реактивных) сил и анализа природы воздействия миграции теплоносителя, в адэкватности для обеих теорий гипотезы близкодействия.  [c.2]

При больших скоростях потока теплоносителя на входе в зону воздействия миграции процессы тормол<еиия и ассимиляции могут иметь значительную протяженность во времени и пространстве. Так как описание потока теплоносителя в пределах зоны воздействия при указанных условиях в общем случае не представляется возмол<ным, то для данного анализа целесообразно использовать ту же идеализированную рабочую схему, которая принята для аналогичного процесса в механике тела переменной массы на основе так называемой гипотезы близкодействия. Согласно этой гипотезе отделение от тела и присоединение к нему изменяющих материальных точек (в нашем процессе — мигрирующих элементов) происходит в условиях импульсных воздействий, т. е. конечные изменения параметров происходят на бесконечно малом участке взаимодействия.  [c.22]

Установлению М. у. предшествовал ряд открытий законов взаимодействий заряженных, намагниченных и токонесущих тел (в частности, законов Кулона, Био — Савара, Ампера). В 1831 М. Фарадей (М. Faraday) открыл закон эл.-магн. индукции и примерно в то же время ввёл понятие электрич. и магн. полей как само-стоят. физ, субстанций. Опираясь на фарадеевское представление о поле и введя ток смещения, равнозначный по своему магн. действию обычному электрич. току, Дж. К. Максвелл (J. С. Maxwell, 1864) сформулировал систему ур-ний, названную впоследствии ур-ниями Максвелла. М. у. функционально связывают электрич. и магн. поля с зарядами и токами и охватывают собой все известные закономерности макроэлектромагнетизма. Впервые о М. у. было доложено на заседании Лондонского Королевского общества 27 окт. 1864. Первоначально Максвелл прибегал к вспомогат. механич. моделям эфира , но уже в Трактате об электричестве и магнетизме (1873) эл.-магн. поле рассматривалось как самостоят. физ. объект. Физ. основа М. у.—-принцип близкодействия, утверждающий, что передача эл.-магн. возмущений от точки к точке происходит с конечной скоростью (в вакууме со скоростью света с). Он противопоставлялся ньютоновскому принципу дальнодействия, сводящемуся к мгновенной передаче воздействий на любое расстояние (с - оо). Матем. аппаратом теории Максвелла послужил векторный анализ, представленный в инвариантной форме через кватернионы Гамильтона. Сам Максвелл считал, что его заслуга состоит лишь в матем. оформлении идей Фарадея.  [c.33]


В 1831 Фарадей открыл явление эл.-магн, индукгши. При попытках объяснения этого явления с помощью конг1епции дальнодействия выявились значит, затруднения. Фарадей высказал гипотезу (ещё до открытия эл.-магн. индукции), согласно к-рой эл.-магн. взаимодействия осуществляются посредством промежуточного агента — эл.-магн. пол (концепция близкодействия). Это послужило началом формирования новой науки о свойствах и законах поведения особой формы материи — эл.-магн. поля.  [c.312]

Относительность описания. Опираясь на релятивистскую ковариантность законов физики и идею близкодействия зарядов посредством поля (см. Взаимодействие), можно ограничиться формулировкой локальных, дифференц. ур-ний Э. в одной, удобнее всего—в к.-л. инерциальной (декартовой) системе координат системе отсчёта). В соответствии с эквивалентности принципо.ч Эйнштейна описание физ. явлений представляется наиб, простым именно в локально инерциальной системе отсчёта, к-рая может быть реализована в окрестности любого события (точки пространства-времени), будучи связанной со свободно падающим телом отсчёта. Тогда локально тяготение не проявляется метрич. тензор сводится к диагональному Т1 р с сигнатурой (-1----) (плоское Мйнковского пространство-время). Согласно относительности принципу, описание любых, в т. ч. эл.-магнитных, процессов не зависит (численно) от выбора различных инерциальных систем отсчёта, если в каждой из них начальные и граничные условия заданы одинаково (численно). Вместе с тем характеристики одного и того же процесса, конечно, выглядят по-разному из разл. систем отсчёта, поскольку ему отвечают в них различные начальные и граничные условия для полей и частиц.  [c.520]


Смотреть страницы где упоминается термин Близкодействие : [c.89]    [c.99]    [c.161]    [c.20]    [c.203]    [c.82]    [c.88]    [c.142]    [c.315]    [c.149]    [c.66]    [c.155]    [c.170]    [c.317]    [c.471]    [c.321]    [c.100]    [c.937]   
Курс теоретической механики. Т.1 (1982) -- [ c.10 ]



ПОИСК



Силы близкодействия

Силы близкодействия поперечные

Силы близкодействия потенциальные

Силы близкодействующие

Теория близкодействия

Теория близкодействия дальнодействия

Теория близкодействия молекулярно-кинетическая



© 2025 Mash-xxl.info Реклама на сайте