Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы Серебро

Проведение спекания в условиях, когда входящий в композицию легкоплавкий компонент образует при спекании жидкую фазу, активизирует усадку и обеспечивает получение заготовок с малой или даже нулевой пористостью, с высокими физико-механическими свойствами. С этой же целью, например, применяют пропитку тугоплавких материалов серебром или медью при производстве электро-контактных деталей.  [c.424]

Для улучшения приработки и уменьшения износа торцы бронзовых цилиндровых блоков и распределительных дисков обычно покрывают тонким слоем (в несколько микрон) антифрикционных материалов (серебром, индием с подслоем свинца и свинцом). Для снижения трения и повышения стойкости к загрязнениям насосов,  [c.203]


Характер кривых деформации волокнистых материалов металл — металлическое направленное волокно почти не отличается от аналогичных кривых для меди, алюминия. Для примера на рис. 141 и 142 [67] приведены кривые растяжения для чистого серебра (99,9%) и волокнистых материалов серебро — металлическое волокно из различных металлов или сплавов с одинаковым содержанием волокон, имевших диаметр 0,063—0,075 мм. Кривые получены в условиях растяжения при комнатной температуре. Можно видеть, что разница в напряжениях течения для чистого серебра и волокнистых композиций на начальной стадии деформирования невелика, но она увеличивается по мере роста степени деформации. Приведенные на рис. 141 и 142 кривые показывают, что при малых степенях деформации напряжение течения мало зависит от плотности распределения волокон в матрице (объемной доли волокон) и фактически начальное скольжение как в матрице, так и в чистом серебре начинается примерно при одинаковых напряжениях. Об этом же свидетельствуют и данные, представленные на рис. 143 [44]. Можно видеть, что все кривые (степень пластической деформации)—напряжение при их экстраполяции на ось абсцисс для чистого серебра и волокнистого материала с различной объемной долей волокна сходятся в одной точке.  [c.182]

В качестве проводниковых материалов применяют чистые металлы медь, алюминий, реже — серебро, железо, так как легирование (и наклеп) создает искажения в решетке и повышает электросопротивление  [c.553]

Цирконий, как и тантал, в отличие от таких материалов, как серебро, шелк, не взаимодействует с живыми тканями.  [c.559]

Нормальный электродный потенциал серебра равен -1-0,799 а, т. с. значительно положительнее потенциала водородного электрода, и по этой причине серебро является термодинамически устойчивым материалом в неокислительных средах, в том числе в неаэрированных растворах соляной и плавиковой кислот. Наличие в растворах этих кислот окислителей оказывает ускоряющее влияние на коррозию серебра.  [c.275]

Пр 1 расчете подшипников из более прочных материалов (бронзы, алюминиевые сплавы, серебро) решающи.ми являются гидродинамика подшипника, его геометрические (с/, ф) п режимные (/.) факторы, рациональный выбор которых позволяет довести удельные нагрузки до 150 — 300 кгс/см", а в отдельных случаях до 500 — 600 кге ехг.  [c.361]

При работе механизмов при высоких температурах, в химически активных средах и в вакууме жидкие смазки теряют свои свойства. В этих случаях применяют твердые смазки, к которым относятся графит, а также сульфиды и селениды молибдена или вольфрама. Из твердых смазок наибольшее распространение получил дисульфид молибдена (МоЗ ), который наносится на трущиеся поверхности в виде пленки толщиной 20. . . 30 мкм и применяется в обычных условиях и 1 вакууме при больших перепадах температур (—180. .. -г 400 С) и высоких удельных давлениях. В опорах трения часто применяют металлокерамические самосмазывающиеся материалы в виде бронзо-графитовых и железо-графитовых материалов, где кроме твердой смазки (графита) присутствует жидкая смазка, заполняющая поры материала. Применяют также пористые антифрикционные материалы на основе меди и серебра, поры которых заполнены сульфидами, селенидами и теллуридами молибдена, вольфрама, ниобия. В этих случаях твердая смазка обеспечивает высокую несущую способность и малые коэффициенты трения.  [c.168]


Физическая сущность методов. Величину, характеризующую способность материала намагничиваться, называют относительной магнитной проницаемостью ц (безразмерная величина). Она представляет собой отношение магнитного поля, создаваемого током в намагниченной среде, к магнитному полю, создаваемому тем же током в вакууме. В количественном плане ц показывает, во сколько раз результирующее магнитное поле в материале сильнее поля, создаваемого в вакууме. В зависимости от значения ц материалы подразделяются на три группы ферромагнитные, у которых ц > 10" (железо, кобальт, никель) парамагнитные, у которых ц на несколько тысячных долей больше единицы (марганец, алюминий, платина) диамагнитные, у которых ц на несколько тысячных долей меньше единицы (медь, цинк, серебро). Магнитными методами можно контролировать только ферромагнитные материалы.  [c.190]

Только в материале с очень низкой энергией Ец,у (например, в серебре) удается сохранить текстуру латуни до весьма высоких температур прокатки ( 0,5 от  [c.286]

Серебро, платина. Нанесение распыле- Материалы, которые  [c.100]

Электрические свойства некоторых чистых металлов приведены в табл. 27. Наилучшей проводимостью после серебра обладают медь и алюминий, они и являются наиболее распространенными проводниковыми материалами. Проводимость отожженного проводникового алюминия составляет приблизительно 62% проводимости стандартной меди, но плотность алюминия мала, поэтому проводимость 1 кг алюминия составляет 214% проводимости  [c.239]

Клеевые соединения получили в последние годы широкое распространение во многих отраслях машиностроения благодаря появлению клеящих материалов на основе синтетических полимеров, которые обеспечивают склеивание практически всех материалов промышленного значения (стали, сплавы, медь, серебро, древесина, пластики, фарфор, ткани, кожа и многие другие), а также возможности склеивания металлов и неметаллов. Иногда склеивание представляет собой единственный способ соединения разнородных материалов в ответственных конструкциях.  [c.482]

Особое место среди теплообменных аппаратов разных типов занимают тепловые трубы. Тепловой трубой называется испарительно-конденсационное устройство, представляющее собой закрытую камеру, внутренняя полость которой выложена слоем капиллярно-пористого материала (фитилем). Один конец тепловой трубы служит зоной подвода, а противоположный — зоной отвода теплоты. За счет подвода теплоты жидкость, насыщающая фитиль, испаряется. Пар под действием возникшей разности давлений перемещается к зоне конденсации и конденсируется, отдавая теплоту парообразования. Конденсат под действием капиллярных сил возвращается по фитилю в испарительную зону. Происходит непрерывный перенос теплоты парообразования от зоны нагрева к зоне охлаждения (конденсации). Тепловые трубы не требуют затрат энергии на перекачку теплоносителя, они работают при малом температурном напоре, поэтому обладают большой эффективной теплопроводностью, превышающей на несколько порядков теплопроводность серебра или меди — наиболее теплопроводных материалов из всех известных. Для тепловых труб используется большое разнообразие теплоносителей в зависимости от интервала рабочих температур.  [c.219]

Для получения материалов металлокерамическим способом применяют металлы, не образующие твердых растворов. При выборе компонентов для металлокерамических контактов исходят из следующих основных условий один из них должен обладать хорошей проводимостью, второй должен быть механически прочным и более тугоплавким, чем первый, причем допустима пониженная проводимость оба компонента при возможной рабочей температуре контактов не должны сплавляться между собой. Металлокерамические контакты имеют по сравнению с обычными металлическими преимущества, заключающиеся в большей стойкости к оплавлению, привариванию и износу. Например, при постоянном и переменно 1 токах 0,5—4 А и напряжениях от 2 до 100 В лучшие результаты показали металлокерамические контакты из серебра и никеля и серебра и вольфрама, чем из серебра и его сплавов.  [c.268]


Материалы высокой проводимости. Среди указанных материалов наиболее широкое распространение получили серебро, медь и алюминий.  [c.118]

В качестве контактных материалов для слаботочных разрывных контактов помимо чистых тугоплавких металлов (вольфрама, молибдена) применяются благородные металлы (платина, золото, серебро), а также различные сплавы на их основе (золото—серебро, платина—рутений, платина—родий) металлокерамические композиции (например, Ag— dO).  [c.130]

Для изготовления коллекторных пластин часто используются твердая медь, а также медь, легированная серебром, и другие материалы.  [c.131]

Серебро — металл белого цвета, один из наиболее дефицитных материалов, так как содержание его в земной коре составляет всего лишь 7-10 % мае. Среди всех проводниковых материалов серебро обладает минимальным удельным сопротивлением при нормальной температуре (см. табл. 4.1). В соответствии с ГОСТ 6836—80 серебро, имеющее марку Ср999—999,9, должно содержать не более 0,1 % примесей. Механические характеристики серебра невысоки твердость по Бринеллю составляет всего 25 (немного более золота), предел прочности при разрыве не превышает 200 МПа, а относительное удлинение при разрыре достигает 50 %. По сравнению с другими благородными металлами (золотом, платиной) серебро имеет пониженную химическую стойкость, имеет тенденцию диффундировать в материал подложки, на который оно нанесено. В условиях высокой влажности и при повышенных температурах процесс диффузии серебра в материал подложки значительно усиливается.  [c.118]

В зависимости от того, производится ли окисление до или после придания материалу окончательной формы, материалы называются соответственно до- и послеокисленные. Значительное количество материалов серебро—окись кадмия изготовляют по методу внутреннего окисления. На рис. 2 приведены типичные микроструктуры сплавов 90 % серебра— 10 % окиси кадмия, полученные четырьмя различными методами.  [c.422]

Кроме указанных в табл. 6-10 металлов и сплавов, для высокона-груженных контактов применяют следующие металло-керамическне материалы серебро — окись кадмия серебро — никель серебро — графит серебро — вольфрам серебро — молибден серебро — карбид вольфрама серебро — окись свинца серебро — кадмий — никель медь — вольфрам медь — графит. В табл. 6-11 даны некоторые характеристики материалов для размыкаемых контактов.  [c.259]

В качестве материалов для контактов в устройствах связи применяют металлы Р1, А , и др., а также сплавы Ли——Р1, Ag—Аи, Об—КЬ и др. В качестве материалов для контактов, используемых в переключателях железнодорожных сигналов, применяют материалы с высокой точкой плавления углерод, медно-углеродные материалы, серебряно-углеродные материалы и т. и. При передаче электрической мощности используют такие сплавы, как твердокатаная медь, агломерационные сплавы и др. В качестве материалов для включателей п реохордов, где используются скользящие конта <ты, возникают проблемы, связанные с пстпранием контактен и возникновением высокочастотных шумов. В этих случаях находят применение такие сплавы, как А —1п, Ag—N1, Аи—Мп, Ag—Рс1 и др. В качестве материалов для пантографов па электропоездах раньше применяли материалы системы медь — углерод, в настоящее время используют спеченную смеси бромитов с медным, серебряным или железным порошками, графитом и др.  [c.371]

Принципиальное отличие МПЦ от релейных систем состоит в простоте процессов проектирования, изготовления, строительства и ремонта благодаря малым размерам МПЦ и значительно меньшему (примерно на 50 %) объему монтажных работ, неизбежных при создании релейных систем. Значительным преиму-щестжум МПЦ является снижение стоимости системы, в частности, за счет сокращения затрат на дефицитные материалы (серебро, медь и др.).  [c.163]

Когда давления нет или оно мало, изменение энтальпии активации наиболее велико и приближается к изменению внутренней энергии системы при активации Эксперименты, выполненные на модельном материале (серебре), показали, что значение Е Ец, в этом случае и близко к половине энергии связи в решетке серебра ( 34 ккал1моль) [19]. (Здесь а —экспериментальная энергия активации). Если пользоваться квазихимической теорией твердого тела, учитывающей взаимодействие только между ближайшими соседними атомами, то такая энергия требуется для разделения металлических структур по наиболее плотноупакованной плоскости. Этот путь требует наименьшей энергии для освобождения химических связей, т. е. активации поверх-31  [c.34]

Порошковая металлургия позволяет получать композиционные материалы и детали, характеризующиеся высокой жаропрочностью, износостойкостью, стабильными магнитными и другими специаль-г(ыми свойствами. Возможность получения псевдосплавов из таких носплавляющихсл металлов, как медь—вольфрам, серебро—вольфрам и др., обладающих высокими электропроводимостью и стойкостью к злектроэроаиоиному изнашиванию, делает их незаменимыми для изготовления электроконтактных деталей. Пористые материалы в отдельных случаях становятся единственно приемлемыми для изго-  [c.417]

Р1-27. к началу 60-х годов, когда вся Р1-27 была израсходована и появилась возможность получить значительно более чистую платину, было решено снова изготовить стандартный платиновый электрод. В результате появилась Р1-67, где число указывает уже не номер плавки, а год изготовления, 1967. Спецификация Р1-67 указана в отчете НБЭЗР 260-56 (1967), а образцы проволоки изготовляются Службой стандартных справочных материалов НБЭ под названием 5РМ-1967-Р1-67. Химический состав Р1-67 приведен в табл. 6.3. При температурах ниже 50 К термо-э.д.с. платины начинает слишком сильно зависеть от следов примесей, и поэтому НБЭ рекомендовало в качестве альтернативы стандартный сплав серебра с золотом, который может быть использован до 4 К и известен под названием ЗРМ-733.  [c.276]

Для покрытий применяют материалы со слоистой структурой (графит, дисульфид молибдена, нитрид бора и другие со свя-зуюнгими в виде смол или клеев) химически активные (фосфаты, фториды и др.), наносимые путем химических реакций, а также металлические покрытия серебром.  [c.147]


По техническим условиям на работу узла иногда не допустимо применение жидких или консистентных смазок (вакуум, агрессивные среды). В этом случае используют либо твердые смазочные покрытия, либо самосмазывающиеся материалы. Наиболее известны твердые смазки — графит, MoSj н пленки из никеля, кобальта, серебра, золота.  [c.747]

Влияние состава отчетливо проявляется при сопос тавлении данных для изоморфных материалов с одина ковыми системами скольжения, как следствие этого, одинаковыми текстурами деформации. Примером, став шим классическим, являются результаты, полученные впервые Глокером с сотр. на меди и серебре, прокатан ных на 99,9%. Текстура прокатки оказалась в обоих слу чаях одинаковой 011 <211>, а текстуры рекристал лизации — различными в меди текстура куба 100] <001 >, в серебре текстура 113 <211>, которая по лучается из текстуры прокатки поворотом вокруг o i <211> на 31,5°. Кроме того, при повышении темпе ратуры отжига текстура куба в меди сохраняется чет ко, тогда как текстура ИЗ <211> в серебре стано вится менее четко выраженной.  [c.404]

Долгое время материалом катода служила чистал платина. В целях экономии часто применяют катод, представляющий собой. мета.ът - носитель, по-к-рытый слоем платины. Металлом - носителем. могут быть серебро, медь, бронза, купроникель, железо, свинец, латунь, титан. Стоимость таких катодов составляет примерно 30% стоимости системы анодной защиты. Размеры их невелики (62,5 мм в длину и 40 мм в диаметре), поэтому такие катоды применяли в аппаратах небольших объёмов.  [c.76]

Для контактов с большими значениями разрываемой мощности используют метаплокерамические материалы. Заготовку прессуют из порощка вольфрама под больпшм давлением, спекают в атмосфере водорода, получая достаточно прочную, но пористую основу, которую затем пропитывают расплавленным серебром или медью для увеличения проводимости.  [c.29]

Палладий (Рф - серебристо-белый металл, по внешнему виду напоминающий платину. Он мягок, пластичен и легко поддаётся обработке. Выпускается марок Дц-99,9 и Пд-99,8. По многим свойствам палладий очень близок к платине, а по стоимости дешевле в 4-5 раз, поэтому в ряде случаев служит ее заменителем его используют в электровакуумной технике дая поглощения водорода. Палладий и его сплавы с серебром и медью применяют в качестве контактных материалов. Палладиевую пасту, как и платиновую, испо.пьзуют для нанесения электродов на керамические конденсаторы.  [c.32]

Название припоя, как правило, определяется металлами, входящими в него в наибольших количествах. Название припоев, содержащих драгоценные или редасие материалы даже в небольших количествах, происходят от этих металлов, В условных обозначения марок припоев первая буква П (припой), а затем идут сокращённое наименование основных компонентов и их количество в процентах. Используются следующие сокращения олово - О, сурьма - Су, свинец - С, алюминий - А, серебро - Ср и т.д.  [c.41]

Механизм формирования еервовитной пленки в консистентных смазочных материалах. Сервовитная пленка может образовываться в паре трения сталь—сталь при работе с металлоплакирующими консистентными смазочными материалами, содержащими мелкие частицы меди, свинца, серебра и др. При использовании смазочного материала ЦИАТИМ-201 с добавками меди, бронзы или латуни, а также свинца в паре сталь-сталь поверхность деталей покрывается тонкой пленкой, состоящей из металла применяемых порошков.  [c.144]

Циферблаты и индексы изготавливаются из дюралюминия Д16А-Т, латуни ЛС 59-1, органического стекла, стали (белой жест г), нейзильбера и других материалов, а стрелки—изД16А-Т и Д1А-Т. Штрихи и упоры на циферблат наносятся стальными и алмазными резцами (на делительных машинах), травлением, фотографированием и печатанием на специальных станках. Риски и цифры, нанесенные резцами и травлением, заполняются краской, а для приборов, эксплуатируемых в темном помещении,— светящейся массой. Для декоративной отделки и защиты от коррозии детали отсчетных устройспв окрашивают, анодируют, оксидируют, хромируют или серебрят. Применяют и другие покрытия.  [c.368]

Степень обгорания, отнесенная к единице заряда, в зависимости от величины тока для различных материалов Ag— dO приведена на рис. 169. Мелкозернистое серебро имеет наиболее высокую степень обгорания. Неокис-ленный сплав Ag— d (9%) имеет на 30% меньшую степень обгорания. Большее снижение степени обгорания наблюдается для материалов типа Ag— dO. Электроды, изготовленные обычным порошковым методом (кривая /) имеют значительно более высокую степень обгорания,  [c.249]

По особенностям магнитных свойств все материалы могут быть разделены на парамагнетики, диамагнетики и ферромагнетики. Парамагнетики отличаются тем, что при помещении их в магнитное поле они усиливают его внутри себя вследствие совпадения направления их намагниченности с направлением внешнего поля. Диамагнетики ослабляют внутри себя магнитное поле, действутещее извне, вследствие того что направление их намагниченности противоположно направлению внешнего поля. К диамагнетикам относятся медь, золото, серебро, цинк и др.  [c.288]

Установлены также сверхпроводящие свойства у некоторых полупроводников (например, антимонида цндия InSb), серы, ксенона и пр. В то же время для многих проводниковых материалов, таких, как серебро, медь, золото, платина и др., даже при очень низких температурах достичь сверхпроводящего состояния пока не удалось. Некоторые из сверхпроводниковых материалов, представляющих практический интерес, представлены в табл. 4.2.  [c.123]


Смотреть страницы где упоминается термин Материалы Серебро : [c.188]    [c.274]    [c.297]    [c.191]    [c.254]    [c.71]    [c.35]    [c.71]    [c.252]    [c.252]    [c.270]    [c.130]   
Конструкционные материалы (1990) -- [ c.520 ]



ПОИСК



Материалы Медь, сплав с серебром

Серебро

Серебро как подшипниковый материал



© 2025 Mash-xxl.info Реклама на сайте