Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ртуть Свойства

Ртуть (свойства ртутного пара см, табл. 81)  [c.387]

Роликоподшипники — см. Подшипники роликовые Ртуть—Свойства 92, 115  [c.791]

Легкоплавкие металлы — цинк, кадмий, ртуть, олово, свинец, висмут, таллий, сурьма и элементы с ослабленными металлическими свойствами—галлий, германий.  [c.17]

Температура плавления — особенно важная константа свойств металла. Она колеблется для различных металлов в весьма широких пределах — от минус 38,9 С, для ртути — самого легкоплавкого металла, находящегося при комнатной температуре в жидком состоянии, до 3410°С для самого тугоплавкого металла — вольфрама.  [c.42]


Итак, всего лишь 50 лет потребовалось для того, чтобы термометрия шагнула от состояния почти полного небытия до уровня, когда стало возможно вести достоверные метеорологические записи. Возникло понятие температурной шкалы, но еще отсутствовало четкое понимание зависимости шкалы от свойств термометрической жидкости. Для этого надо было дождаться Реомюра, который в 1734 г. понял, что шкалы спиртовых и ртутных термометров должны быть различны, поскольку эти жидкости по-разному расширяются с ростом температуры. Не ясно, ему ли принадлежит мысль, что может существовать некая идеальная термометрическая жидкость, которая позволит получать температуры, в некотором смысле более абсолютные , чем с помощью спирта или ртути.  [c.31]

В качестве жидких теплоносителей в технике применяют различные вещества воздух, воду, газы, масло, нефть, спирт, ртуть, расплавленные металлы и многие другие. В зависимости от физических свойств этих веществ процессы теплоотдачи протекают различно.  [c.403]

Для определения коэффициента теплоотдачи применяют эталонные вещества, физические свойства которых хорошо изучены и мало изменяются с температурой, такие, как красная медь, ртуть, сталь, латунь и др.  [c.525]

Так как зависимость / (р) определяется физическими свойствами рабочего тела, возникла мысль использовать в качестве рабочих тел для паросиловых установок другие жидкости, для которых при тех же давлениях температура кипения значительно выше температуры кипения воды. В качестве таких жидкостей были предложены ртуть и дифенил. Зависимость между давлением и температурой насыщения для воды, дифенила и ртути показана на рис. 98, а таблица ртутных насыщенных паров дана в приложении (табл. XVI).  [c.241]

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]


Широкое применение нашли ртутные лампы, обладающие свойством создавать как линейчатые, так и сплошные спектры с заметной интенсивностью линий. Ртутная лампа представляет собой баллон из стекла или кварца, наполненный инертным газом (например, аргоном) и парами ртути в малых количествах (несколько миллиграммов). Под действием разряда инертного газа внутри лампы, возникшего при зажигании, возбуждаются пары ртути и наблюдается их свечение. Давление паров ртути внутри лампы высокого давления достигает примерно 700 мм рт. ст. Эти лампы дают в основном яркий линейный спектр в видимой и ультрафиолетовой областях.  [c.377]

В устройстве жидкостного термометра используется свойство расширения жидкостей при нагревании. В качестве рабочего тела обычно применяется ртуть, спирт, глицерин. Чтобы измерить температуру тела, термометр приводят в контакт с этим телом между телом и термометром будет осуществляться теплопередача до установления теплового равновесия. Масса термометра  [c.76]

В главе о дисперсии. Действительно, взяв для меди, например, статическое значение электропроводности о = 5,14 10 с , найдем для желтого света, т. е. для V = 5 10 с , что о/у = 1000, тогда как = 1,67. Точно так же произведение для ртути значительно больше, чем для натрия, тогда как обычная электропроводность натрия несравненно больше, чем для ртути. Однако проверка указанных соотношений возможна, если определять д и х для более низких частот (инфракрасных), где и для оптических свойств металлов главную роль играют свободные электроны. Так, например, для X = 12 мкм требуемая теорией связь между оптическими константами и коэффициентом электропроводности металла хорошо оправдывается на опыте.  [c.494]

Опыт показывает, что эти формулы правильно передают зависимость от длины волны только в области малых частот (инфракрасные лучи). В видимой же и ультрафиолетовой областях для всех металлов (за исключением ртути) обнаруживаются заметные отступления. Таким образом, для более высоких частот оптические свойства металлов нельзя объяснить только свойствами свободных электронов, и необходимо учесть также влияние связанных электронов (электронов поляризуемости), роль которых становится особенно заметной для частот, близких к собственным частотам атомов. Учет электронов поляризуемости дает добавочные члены, соответствующие собственным частотам ю, . Окончательно получим  [c.562]

В природе нет рабочих тел (веществ), термометрические свойства которых удовлетворяли бы предъявляемым требованиям во всем диапазоне измерения температуры. Поэтому температуру, измеряемую термометром, шкала которого построена на допущении линейной температурной зависимости термометрических свойств какого-либо тела, называют условной температурой, а шкалу — условной температурной шкалой. Примером условной температурной шкалы служит стоградусная температурная шкала Цельсия, получившая наиболее широкое распространение из числа старых условных температурных шкал. В ней принят линейный закон температурного расширения ртути, а в качестве основных точек шкалы используются точка таяния льда (0°С) и точка кипения воды (100 °С) при нормальном давлении.  [c.171]

Жидкостью называют физическое, тело, обладающее свойством текучести, ввиду чего жидкость не имеет собственной формы и принимает форму сосуда, который она заполняет. Жидкости делят на два вида капельные и газообразные. Капельные жидкости характеризуются большим сопротивлением сжатию (почти полной несжимаемостью) и малым сопротивлением растягивающим и касательным усилиям, обусловленным незначительностью сид сцепления и сил трения между частицами жидкости. К капельным жидкостям относятся вода, нефть, керосин, бензин, ртуть, спирт и т. п. Газообразные жидкости (газы) обладают большой сжимаемостью, не оказывают сопротивления ни растягивающим, ни касательным усилиям и имеют малую вязкость. Сжиженные газы (пропан, бутан) также обладают значительной сжимаемостью.  [c.9]


Материалы, изготовленные из металлических порошков, в большинстве случаев обладают такими хорошими свойствами, что их промышленное развитие представляет большой интерес. Уже первые эксперименты с -чистыми железными порошками привели к созданию магнитных материалов. Материал получают путем электроосаждения железа или кобальта в ртутный катод, ртуть удаляют фильтрацией и магнитной сепарацией. Постоянные магниты нз прессованного железа или кобальта имеют =  [c.232]

Использование любого другого свойства вещества, для которого заранее не известна зависимость от температуры, для создания температурной шкалы невозможно. Так, если пытаться создать температурную шкалу, используя свойство расширения ртути от температуры (ртутный термометр), то заранее, до установления температурной шкалы, не известно, как зависит коэффициент расширения ртути от температуры поэтому использование этого свойства приведет к неизбежным ошибкам в температурной шкале (цена одного градуса будет различной при разных температурах, т. е. шкала будет неравномерной). Использование еще какого-либо свойства для построения температурной шкалы приведет к другим ошибкам. Эти шкалы, называемые эмпирическими, не будут совпадать.  [c.71]

Таким образом, при заданной температуре давление насыщенного пара (давление насыщения) имеет одно и то же строго определенное значение. Само собой разумеется, что давление насыщения (при заданной температуре) будет зависеть и от физических свойств испаряющейся жидкости (воды, ртути, спирта и т. п.).  [c.156]

ТАБЛИЦА 15. ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СВОЙСТВА РАЗЛИЧНО ОРИЕНТИРОВАННЫХ МОНОКРИСТАЛЛОВ РТУТИ (И  [c.49]

К сверхпроводникам первого рода принадлежат химически и физически однородные, чистые металлы. Сверхпроводимость первоначально была обнаружена в 1911 г. у свинца и ртути, в настоящее время установлено, что не менее 25 металлов обладают этими свойствами. Среди сверхпроводников имеются и благородные металлы, например, иридий с Ткр = = 0,14° К тугоплавкие металлы — молибден с Ткр = 0,92° К и вольфрам с Т кр = 0,0Г К и многие другие. Характерной особенностью сверхпроводников первого рода является параболическая зависимость критической напряженности  [c.278]

Физические свойства ртути и некоторых расплавленных, металлов [Л. 9]  [c.470]

По своим физическим свойствам большинство расплавленных металлов отличается от обычных теплоносителей — воды, масел и др. Главной особенностью металлических теплоносителей является высокая теплопроводность и соответственно низкие значения критерия Прандтля Рг = 0,005 0,05. В последнее время как в нашей стране, так и за рубежом было проведено большое число измерений теплоотдачи к жидким металлам в различных условиях. В опытах применялись такие теплоносители, как натрий, калий, литий, цезий, ртуть, висмут, сплавы висмута со свинцом и др. Первые широкие и систематические исследования теплоотдачи и гидравлического сопротивления были выполнены в Энергетическом институте им. Кржижановского [Л. 69, 70].  [c.276]

Шаг — Измерение 502 Резьбы метрические — цилнндри ческие — Контроль 488 Ременные передачи — Обозначе ния 18 Ротаметры 435 Ртуть — Свойства 211 Рулетки металлические 416  [c.598]

При средней температуре ртути /it = 250 физические свойств ) соотиетственно равны  [c.101]

Лиофобные или лиофильные свойства проницаемых материалов в сочетании с малым диаметром пор обеспечивают достаточно эффективную сепарацию парожидкостной смеси, что особенно важно, например, для забора топлива из баков в условиях невесомости. На этом же принципе основана работа трубчатого испарителя для получения паров ртути в ионном двигателе. Пористая вставка из вольфрама внутри молибденовой трубки нагревается размещенным на ее внешней поверхности электрическим нагревателем. Жидкая ртуть под давлением подается в пронш,аемую вставку и испаряется. Вставка одновременно выполняет роль парожидкостного сепаратора, препятствуя протоку сквозь нее жидкой ртути. В том случае, когда жидкость смачивает нагреваемую пористую матрицу, на ее выходную поверхность для исключения прорыва жидкости и получения сухого пара помещают слой проницаемого лиофобного материала, например фторопласта.  [c.16]

Существенным недостатком способа измерения температуры с помощью жидкостных термометров является то, что шкала температуры при этом оказывается связанной с конкретными физическими свойствами определенного вещества, используемого в качестве рабочего тела в термометре,— ртути, глицерина, спирта. Изменение объема различных исидкостей при одинаковом нагревании оказывается несколько различным. Поэтому ртутный и глицериновый термометры, показания которых совпадают при О и 100 С, дают разные показания при других температурах.  [c.77]

Штейнер и Шенек [204] впервые обнаружили, что помещенный в слабое продольное магнитное поле сверхпроводящий стержень, по которому течет большой ток, обладает необычными магнитными свойствами. Так, когда ток превышает некоторую минимальную величину, продольный магнитный поток в стержне превышает поток в нормальной фазе, хотя он должен был бы быть меньше него. Это явление называется парамагнитным эффектом поскольку стержень с током ведет себя подобно парамагнитному веществу. Наиболее сильный эффект наблюдался Мейснером и др. [142] на образцах олова и ртути. Некоторые из полученных ими на о.лове результатов приведены на фиг. 32. В их опытах образец находился в катушке, соединенной с баллистическим гальванометром регистрировались отклонения гальванометра при иереключении продольного поля, когда сниженная температура становилась ниже точки перехода. Как видно из кривых фиг. 32, вследствие парамагнитного эффекта отклонения возрастали более чем в 2 раза по сравнению с их значениями для нормального состояния.  [c.656]

После Великой Октябрьской социалистической революции в нашей стране широкое развитие колучили исследования в области термодинамики м других теоретических основ теплотехники. Особо следует отметить большие работы таких научных учреждений, как Всесоюзный теплотехнический институт им. Ф. Э. Дзержинского, Центральный котлотурбинный институт им. И. И. Ползунова, Энергетический институт им. Г. М. Кржижановского АН СССР, Московский энергетический институт. Центральный аэрогидродина-мический институт и ряддругих. Были проведены экспериментально обоснованные расчеты рабочих процессов двигателей внутреннего сгорания, газовых течений и разработаны теории расчета газотурбинных и ракетных двигателей. Проводились обширные исследования теплофизических свойств большого количества рабочих тел (вода, ртуть, холодильные агенты, жидкие горючие и окислители). Водяной пар, имеющий широкое применение в теплоэнергетике, исследовался весьма тщательно в больших диапазонах давлений и температур. Здесь следует выделить работы М. П. Вукаловича,  [c.8]


В тепловых двигателях и холодильных установках в качестве рабочих тел используются жидкости и пары, например, аммиака NHs, диоксида углерода Oj, хладонов (фторхлорорганические соединения), ртути Hg и др. Особенно широкое распространение в качестве теплоносителя, или рабочего тела, получила вода Н О (жидкость и пар), поэтому ее свойства здесь обсуждаются подробно.  [c.87]

Оксидированные порошки, проявляющие обменную анизотропию. Мелкие частицы кобальта, покрытые оболочкой из окиси кобальта, проявляют необычные магнитные свойства. Частицы диаметром 0,02 мкм были получены электроосаждением в ртути, поверхность их была окислена на воздухе, частицы охлаждались до низких температур в сильном магнитном поле. Эти частицы имели однонаправленную анизотропию (рис. 168). Петля гистерезиса смещена вдоль оси поля-, в результате чего коэрцитивная сила равна Яс = 294-10 дж/м (3700 э) в одном направлении и 39 800 а/м (500 э) в другом направлении (см. рис. 166), а максимальная энергия составляет 16 X  [c.236]

Ойъемы пьезометра, соответствующие каждому положению ртути, измеряют при предварительной тарировке его. Количество газа можно определить по давлению, температуре и объему, которые он имел при первоначальном заполнении пьезометра (при этом предполагается, что свойства газа при параметрах заполнения хорошо известны). Определяемый удельный объем и газа при параметрах опыта может быть тогда рассчитан по (5.1) или по формуле, аналогичной (5.2)  [c.140]

В этом смысле вода является веществом с не самыми лучшими термо ди 1ймическими свойствами. Лучше было бы вещество, которое и.мело бы вЫ сокую температуру насыщения при умеренных давлениях (например, ртуть при давлении 1,5 МПа имеет температуру кипения 550 °С), что позволило бы осуществить цикл Ренкина без перегрева.  [c.126]

В теплотехнике и хладотехнике используют в качестве рабочих тел и холодильных агентов различные жидкости и их пары аммиак NH3, двуокись углерода СО. , фреоны (фторхлорорганические соединения), ртуть Hg и др., но наиболее широко применяют в качестве рабочего тела теплоэнергетической установки и в качестве теплоносителя воду и водяной пар. Объясняется это их ценными свойствами высокой удельной теплоемкостью жидкой воды и пара, доступностью, невысокой стоимостью и др.  [c.155]

В [Л. 5-60] коэффиценты турбулентного переноса исследуются применительно к стабилизированному течению ртути в цилиндрической трубе радиуса R. В этом -случае при 9с = onst и постоянных теплофизических свойствах справедливы следующие законы распределения X я q по радиусу "рубы  [c.284]

Алюминиевые протекторы с цинком и индием как активаторами приобретают все более широкое распространение. Несмотря на сравнительно низкие значения 2 (не более 0,8) и стационарный потенциал и ц всего —0,8 В они имеют особо важное преимущество — низкую поляризуемость. Поэтому именно такие протекторы предпочтительно применяют для защиты сооружений в прибрежном шельфе. Алюминиевые протекторы с активирующими добавками цинка и олова занимают по показателю токоотдачи промежуточное положение. Их стационарные потенциалы близки к потенциалам индийсодержащих сплавов или несколько более положительны. Однако поляризуемость у них заметно выше. Такие материалы необходимо подвергать термической обработке, зависящей от их химического состава. В табл. 7.3 представлены свойства трех различных алюминиевых сплавов, содержащих в качестве добавок соответственно ртуть, индий и олово.  [c.183]


Смотреть страницы где упоминается термин Ртуть Свойства : [c.441]    [c.416]    [c.305]    [c.361]    [c.611]    [c.631]    [c.638]    [c.171]    [c.60]    [c.29]    [c.285]    [c.197]    [c.93]    [c.264]    [c.69]    [c.180]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.397 , c.462 ]



ПОИСК



Ртуть

Ртуть жидкая Свойства хлорная — Растворимость в воде

Ртуть жидкая Свойства чистая — Степень черноты полного

Ртуть жидкая — Свойства теплофизические — Зависимость от температур

Ртуть жидкая — Свойства теплофизические — Зависимость от температур излучения

Ртуть термодинамические свойства

Ртуть термодинамические свойства сухого

Ртуть физические свойства жидкости

Ртуть — Растворимость в химических средах 71 — Свойства 9 Физические константы

Свойства катодного пятна на ртути и других металлах



© 2025 Mash-xxl.info Реклама на сайте