Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Графит Свойства

Для явного определения момента потери устойчивости откоса применена теория графов - свойство связанного плоского графа.  [c.5]

Графит — Свойства Графитизированная сталь — см.  [c.1047]

Допускается применять лакокрасочные покрытия для целен, не указанных в графе Свойства и назначение , в условиях эксплуатации для данного покрытия.  [c.801]

Для изготовления литых деталей применяют чугуны (серый, модифицированный, высокопрочный, ковкий, легированный), сталь (углеродистую, легированную), медные, магниевые, алюминиевые, цинковые, свинцовые, оловянные и никелевые литейные сплавы, которые хорошо заполняют в расплавленном сосгоянии литейную форму и обладают после затвердевания необходимыми механическими, физическими и химическими свойствами. Марку материала детали указывают в соответствующей графе основной надписи чертежа. Многие литейные сплавы имеют в обозначении марки букву Л, которая характеризует литейные свойства материала и указывает способ изготовления детали.  [c.256]


Указанные обстоятельства определили условия проведения опытов [Л. 89, 90, 144, 145], в которых были использованы дисперсные материалы (графит, кварцевый песок, алюмосиликатный катализатор и др.), по своим сыпучим свойствам близкие к идеальным. Влияние различных факторов на характер движения оценивалось по изменению профиля скорости окрашенного элемента слоя. Движение наблюдалось через плоскую застекленную стенку полуцилиндрического прямоугольного и других каналов либо с помощью просвечивания рентгеновскими лучами через стенку круглого стеклянного канала. В последнем случае использовался диагностический рентгеновский аппарат, а частицы слоя предварительно смачивались барием. Измерительный участок исключал влияние концевых эффектов. Проверка, произведенная радиоактивным [Л. 242] и рентгенологическим [Л. 237] методами, показала, что стеклянная стенка не искажает картину движения. Влияние углового эффекта в месте стыка стекла и стенки уменьшается при использовании каналов прямоугольного сечения. Во всех случаях результаты измерения были представлены в относительных величинах и носят в основном качественный характер.  [c.292]

Сетевая модель включает матрицу свойств детали, описание логических отношений между свойствами и граф 0(7", С) взаимосвязи операторов (7 = ть Тг,. ... Тп —операторы С =  [c.75]

Обычными примесями в техническом никеле являются кобальт, железо, кремний, медь. Эти примеси не оказывают вредного влияния, так как образуют с никелем твердые растворы. При содержании углерода свыше 0,4% но границам зерен выделяется графит, что вызывает снижение прочности металла. Сера является вредной примесью, образующей с никелем сульфид N 382, который дает с никелем эвтектику с температурой плавления 625°С. Кислород, присутствующий в металле в виде NiO, при малом его содержании не сказывается на свойствах металла.  [c.256]

При проектировании БД первым этапом, как отмечалось, является проектирование или построение КМ предметной области. Здесь выполняют структуризацию данных, определяют связи между ними, не учитывая особенностей реализации. Первым этапом построения КМ является анализ данных. При этом собирают информацию о данных, которые используются в имеющихся прикладных программах. В процессе сбора данных определяют имена объектов и элементов данных, описаний, атрибутов, источников, оценки, сложность, важность, отношения связности между элементами и объектами, продолжительность и способы хранения данных. Далее на основе анкетирования проводят анализ организации хранения данных и исследуют документооборот от источника к пользователю. После этого приступают к разработке КМ БД. Первоначально АБД собирает информацию о всех данных для прогнозирования и перспективных исследований. Концептуальная модель БД является основой для ЛМ, которая реализуется средствами реляционной, иерархической или сетевой СУБД, При разработке КМ используют нормализацию отношений, т. е. группируют элементы данных по свойствам модификации, включения и удаления данных. Концептуальная модель может быть также представлена в виде графов.  [c.111]


Указывается материал, из которого должна быть изготовлена деталь (в графе 3 основной надписи). Краткие сведения о материалах и их обозначениях даны в п. 7.9. Свойства материала при необходимости могут быть значительно улучшены термообработкой. О форме записей на чертеже этих сведений сказано в п. 7.10.  [c.162]

Свойства этого чугуна зависят от структуры металлической основы и от формы, размера и количества графитных включений. Чем меньше в металлической основе феррита, тем выше прочность чугуна. Хрупкие включения графита нарушают сплошность металлической основы. Мелкие равномерно рассеянные графитовые включения несколько ослабляют чугун, который по прочности приближается к металлической основе. Лучшими механическими свойствами обладает чугун со структурой перлита, содержащий графит в виде мелких равномерно распределенных чешуек.  [c.75]

Введение наполнителей изменяет диэлектрические свойства пластиков. Так, графит, сажа и другие наполнители резко снижают электроизоляционные свойства.  [c.345]

Для передачи механической энергии за счет сил упругости в период деформации или для поглощения ударных нагрузок, вибраций, возникающих в процессе работы механизмов, применяются пружины. Пружины подразделяются на винтовые и невинтовые. Винтовые пружины выполняются из проволоки круглого сечения, но могут иметь в поперечном сечении прямоугольную форму. Проволока круглого сечения по механическим свойствам подразделяется на проволоку I, П, И1 классов, а по точности изготовления — на проволоку нормальной и повышенной точности — И класса. В графе основной надписи, где указывается материал детали, перечисленные параметры приводятся совместно со ссылкой на соответствующий стандарт. Тип проволоки П1 класса нормальной точности, диаметром 2,0 мм обозначается  [c.124]

В высокопрочных чугунах графит имеет шаровидную форму за счет модифицирования чугуна магнием, вследствие чего улучшаются пластические свойства чугуна. В маркировке высокопрочного чугуна указываются прочность и относительное удлинение при растяжении. Например, ВЧ 40—10 означает высокопрочный чугун, имеющий предел прочности при растяжении 400 МПа и относительное удлинение 10%.  [c.129]

Отражение структурных свойств объектов возможно как с помощью эквивалентных схем, так и с помощью графов.  [c.77]

Иерархический подход. Иерархическая БД имеет граф логической схемы в виде дерева, а тип связей соответствует рис. 2.2, б. Пример логической схемы иерархической БД приведен на рис. 2.4. В иерархической БД связи направлены только от верхних сегментов к нижним, обратные указатели отсутствуют. Это объясняется принципиальным свойством иерархического представления данных каждая запись приобретает смысл лишь тогда, когда она рассматривается в своем контексте, т. е. любая запись не может существовать без предшествующей ей записи по иерархии. При поиске в иерархической БД необходимо указывать значение ключа на каждом уровне иерархии. Так, для доступа к записи из множества G (рис. 2.4) должны быть последовательно указаны ключи записей из множеств А, С и G.  [c.73]

Если же в схеме конструкции нет Треугольника, подобного силовому, то решение графо-аналитическим методом целесообразнее производить с использованием тригонометрических свойств, потому что при наличии ли- Рис. 31  [c.37]

При работе механизмов при высоких температурах, в химически активных средах и в вакууме жидкие смазки теряют свои свойства. В этих случаях применяют твердые смазки, к которым относятся графит, а также сульфиды и селениды молибдена или вольфрама. Из твердых смазок наибольшее распространение получил дисульфид молибдена (МоЗ ), который наносится на трущиеся поверхности в виде пленки толщиной 20. . . 30 мкм и применяется в обычных условиях и 1 вакууме при больших перепадах температур (—180. .. -г 400 С) и высоких удельных давлениях. В опорах трения часто применяют металлокерамические самосмазывающиеся материалы в виде бронзо-графитовых и железо-графитовых материалов, где кроме твердой смазки (графита) присутствует жидкая смазка, заполняющая поры материала. Применяют также пористые антифрикционные материалы на основе меди и серебра, поры которых заполнены сульфидами, селенидами и теллуридами молибдена, вольфрама, ниобия. В этих случаях твердая смазка обеспечивает высокую несущую способность и малые коэффициенты трения.  [c.168]


Графит оказывает сильное влияние на основные свойства чугуна, в первую очередь на прочность и пластичность, характеризующие чугун как конструкционный материал. Он обладает такими преимуществами, которыми не обладают легированные и жаропрочные стали и сплавы. Графит имеет способность хорошо смазывать работающие при трении в паре чугунные и стальные детали при высоких температурах (800 - ЮОО°С).  [c.61]

При производстве отливок из титановых сплавов в качестве огнеупорных материалов применяют углеродсодержащие материалы (графит, технический углерод, кокс). Технология изготовления и свойства углеродсодержащих форм рассмотрены в гл. 9.  [c.204]

Смазочные материалы бывают твердые (графит, слюда), пластичные (литол, солидол, консталин), жидкие (органические и минеральные масла) и газообразные (воздух, газы). Наиболее распространены жидкие и пластичные смазочные материалы. Нередко к смазочному материалу для придания ему новых свойств добавляют другие вещества, называемые присадками, например противозадирные, противоизносные, антикоррозионные и другие присадки.  [c.223]

Графит по сравнению со сталью обладает низкими механическими свойствами, и иоэтому графитные включения можно считать в первом приближении просто пустотами, трещинами. Отсюда следует, что чугун можно рассматривать как сталь, испещренную большим количеством пустот и трещин.  [c.212]

При ароизводстве ковкого чугуна весьма существенно получить при отливке чисто белый чугун, так как частичная графи-тизация при литье и, следовательно, образование пластинчатого графита вызовут при последующей графитизации отложение графита на этих пластинках. Такой чугун будет иметь пониженные свойства, близкие к свойствам простого серого чугуна.  [c.219]

Формовочные материалы — это совокупность природных и искусственных материалов, используемых для приготовления формовочных и стержневых смесей. В качестве исходных материалов используют формовочные кварцевые пески и литейные формовочные ГЛ1П1Ы, Глины обладают связующей способностью и термохимической устойчивостью, что позволяет получать отливки без пригара. Если глина не обеспечивает необходимых свойств смесей, применяют различные связующие материалы. Кроме того, используют противопригарные добавки (каменноугольную пыль, графит), защитные присадочные материалы (борную кислоту, серный une i) и другие добавкн.  [c.131]

Отличительной особенностью высокопрочного чугуна являются его высокие механические свойства временное сопротивление 373— 1180 МПа, относительное удлинение 2—17 %, твердость НВ 137— 360, что обусловлено шаровидиой формой графита, который в меньшей степени, чем пластинчатый графит в сером чугуне, ослабляет сечение металлической массы и не оказывает на нее надрезающего действия. Этот чугун имеет высокую износостойкость, хорошую коррозионную стойкость, теплостойкость, жаростойкость, хладностой-кость и т. д. Высокопрочный чугун широко используют взамен литых стальных заготовок.  [c.161]

В асбовиниловую массу в некоторых случаях можно в качестве наполнителей добавлять и другие порошкообразные материалы (измельченные горные породы, графит и др.), которые . лучшают некоторые свойства асбовиинловой массы (непроницаемость, адгезию и др.).  [c.426]

Полиизобутилеи отличается сравнительно высокой морозостойкостью, озоностопкостыо, светостойкостью, устойчивостью формы, химической стойкостью, высокими диэлектрическими свойствами. Прочностные показатели полиизобутилеиа невысокие. Для повышения механических и других свойств полиизобу-тилены вальцуют с наполнителями (графит, сажа и др.).  [c.433]

Графит — это единственный конструкционный неметаллический материал, обладающий высокой теплопроводностью при достаточно высокой инертности в большинстве агрессивных сред, термической стойкостью при резких перепадах температуры, низким омическим сопротивлением, а также хорошими механическими свойствами. Теплопроводность искусственного графита выше теплопроводности многих металлов и сплавов, в частности свинца и хромоникслсвых сталей, в 3—5 раз. По этой причине применение графита особенно эффективно для изготовления из него теплообмеиной аппаратуры, предназначенной для эксплуатации в условиях воздействия таких агрессивных сред, как серная кислота определенных концентраций, соляная и плавико-  [c.449]

Графит, как было указано, имеет ряд весьма ценных свойств, сочетание которых позволяет широко использовать его в химическом машиностроении. Наряду с высокой химической стойкостью и исключительной теплопроводностью, графит обладает важными в антифрикционной технике свойствами самосмазыва-ния и свойством поверхности графитовой аппаратуры в значительно меньшей степени подвергаться отложениям накипи и загрязнений, чем это свойственно поверхностям других, неметаллических и металлических материалов.  [c.450]

Фторопласты. При увеличении температуры механическая прочность фторонласта-3 (элементарное звено — СРд—СРС1—) существенно снижается (рис. 19.7). Резкое охлаждение с температуры плавления до температуры ниже 100° С увеличивает его механическую прочность, особенно щовышаются сопротивляемость ударным нагрузкам (в 3—5 раз) и относительное удлинение при разрыве (в 5 раз). Фторопласт-3 обладает повышенными эластичными свойствами и отсутствием хладотекучести устойчив к действию агрессивных сред. Наполнителями его являются стеклянные и асбестовые волокна, кварцевая мука, каолин, шифер, графит, молотый кокс и др.  [c.350]

В обозначение материала включаются следующие кл-чественные характеристики наименование и марка материала по ГОСТу и номер стандарта, его химический состав, механические свойства, KOTopiite указываются в графе Материал основной надписи (см, 6 и 15).  [c.248]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]


Прирабатываемость, протнвозадпрные свойства, коррозионная стойкость, влияние на окисление масла, выносливость (последние графы таблицы) оценены по пятибалльной системе (бал.л 5 — наивысший).  [c.382]

Чугун вначале является анодом по отношению к низколегированным сталям, и его потенциал мало отличается от потенциала углеродистой стали. По мере коррозии чугуна, особенно в случае графитизацин, графит на поверхности металла сдвигает потенциал в сторону увеличения, и через некоторое время, продолжительность которого зависит от свойств среды, потенциал чугуна, 1 ожет достичь потенциала графита по отношению и к низколегированным, и к углеродистым сталям. Такое поведение чугуна необходимо учитывать, например, при проектировании вентилей. Запирающие поверхности вентиля должны быть точно подогнаны и не иметь питтингов, они всегда должны быть катодами по отношению к корпусу вентиля, имеющему большую поверхность. Поэтому в водных средах с высокой электропроводимостью чаще используют вентили с корпусами из стали, чем из чугуна.  [c.128]

Графо-аналитический метод с использованием свойств подобных треугольников целесообразно примёнять к решен1до таких задач в том случае, если в схеме конструкции или устройства имеется треугольник, подобный силовому.  [c.37]

В структуре отливок углерод присутствует в виде карбида (РезС) и в свободном виде (графит). Механические и жаропрочные свойства его определяются составом карбидов и формой графита (пластинчатый, шаровидный) (рис. 30).  [c.72]

Вследствие большой чувствительности чугунов к скорости охлаждения их структура и механические свойства существенно изменяются от поверхности к сердцевине. По структуре сеченис валка можно разбить на три зоны наружную из белого чугуна (перлит и цементит) переходную из половинчатого чугуна (перлит, цементит, графит) и сердцевину из серого чугуна, в котором отсутствуют включения структурно свободного цементита (см. рис. 156). Регулировать структуру и механические свойства можно, изменив химический состав чугуна и скорость охлаждения валка.  [c.331]

К неметаллическим материалам относятся пластмассы (текстолит, винипласт, древеснослоистые пластики, пластики и др.), металлокерамические материалы, резина, графит и др. Обладая рядом ценных свойств, легкостью, прочностью, тепло- и электроизоляцией,.стойкостью против действия агрессивных сред, фрикцпон-ностью или антифрккцнонностью и т. д., пластмассы находят в машиностроении все большее распространение. Технико-экономическая эффективность применения пластмасс в машиностроении  [c.353]


Смотреть страницы где упоминается термин Графит Свойства : [c.387]    [c.735]    [c.423]    [c.73]    [c.74]    [c.390]    [c.451]    [c.143]    [c.54]    [c.145]    [c.146]    [c.149]    [c.35]    [c.129]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.183 , c.188 , c.195 , c.613 ]

Краткий справочник машиностроителя (1966) -- [ c.74 , c.378 , c.381 ]



ПОИСК



105, 107 — Химический состав с шаровидным графитом — Механические свойства

113, 114 — Химический состав из чугуна серого с пластинчатым графитом — Механические свойства

159, 192, 194, 195, 197—Свойства наполненный графитом

21, 22, 24, 758 — Свойства с шаровидным графитом

59 — Свойства сечений графа — Описание 60 — Свойства

Антифрикционные свойства графита при высоких температурах (О. С. Гуревич)

Г газ природный графит, свойства

Графит

Графит аблятивные свойства

Дп-граф

Железо-графит Механические свойства

Конструкционный графит и его свойства

Кремний — Влияние на свойства чугуна с шаровидным графитом

Магний — Влияние на свойства графитом

Металлокерамические материалы антифрикционные из легированных порошков с добавкой графита — Свойства

Механические свойства и химический состав отливок из чугуна с пластинчатым графитом (ГОСТ

Некоторые комбииаториые свойства графов

Неоднородность свойств графита

Отливки из чугуна с шаровидным графитом — Механические свойства

Полиамиды 111 — Коэффициенты с графитом, дисульфидом молибдена или тальком 116 — Свойства и применение

СТРУКТУРА И ОСНОВНЫЕ ВИДЫ УГЛЕГРАФИТОВЫХ МАТЕРИАЛОВ свойства графита Тепловые свойства

Структура и свойства натурального графита

Технологические свойства чугуна белого с шаровидным графитом

Углерод — Влияние на свойства чугуна с шаровидным графитом

Физические свойства графита

Физические свойства чугуна алюминиевого с шаровидным графитом

ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ Влияние на механические свойства

ЧУГУН ФЕРРИТНЫЙ ШТАМПОВОЧНЫЕ с пластинчатым графитом—Механические свойства

Чугун антифрикционный — Применение серый с пластинчатым графитом Свойства

Чугун с пластинчатым графитом (ЧПГ) структуры на свойства

Чугун с шаровидным графитом свойствам



© 2025 Mash-xxl.info Реклама на сайте