Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбины внутреннего сгорания — Цикл

Фиг. 24. Цикл турбины внутреннего сгорания с регенерацией тепла. Фиг. 24. Цикл турбины внутреннего сгорания с регенерацией тепла.

ЦИКЛЫ ТУРБИН ВНУТРЕННЕГО СГОРАНИЯ  [c.81]

Турбина внутреннего сгорания может быть осуществлена с регенерацией тепла, т. е. с предварительным подогревом сжатого в компрессоре воздуха теплом выхлопных газов на фиг. 31 2—3 — изобарический подогрев воздуха в регенераторе 5—6 — изобарическое охлажде-иие продуктов сгорания в регенераторе. Остальные процессы цикла соответствуют фиг. 28 и 29.  [c.82]

Турбины внутреннего сгорания — Циклы 81, 82  [c.734]

Как двигатели внутреннего сгорания поршневого типа, так и газотурбинные установки, циклы которых были исследованы выше, работают по разомкнутому циклу. Так, в рассмотренных циклах турбин внутреннего сгорания компрессор засасывает из атмосферы воздух, а из выходного патрубка турбины (в установке, работающей по регенеративному циклу,— из регенератора) в атмосферу выбрасываются отработавшие газы. Таким образом, каждый новый цикл в таких установках осуществляется с новой порцией рабочего тела. Изображение и рассмотрение в р, и- и Т, -диаграммах таких циклов в виде замкнутых было, как мы отмечали, условным.  [c.344]

Соответственно двум основным процессам горения, применяемым в двигателях внутреннего сгорания, а именно при постоянном давлении и при постоянном объеме, имеем два цикла турбин внутреннего сгорания. Рассмотрим сначала первый, представленный на рис. 10-1 и 10-2 и состоящий из двух изобар и двух адиабат. Сжатие йа осуществляется в специальном воздушном компрессоре, сгорание аЬ — в камере горения, расширение Ьс — в турбине, а процесс охлаждения ей—на воздухе.  [c.222]

В учебном пособии рассмотрены первый и второй законы термодинамики, процессы изменения состояния газов и паров, термодинамические основы работы компрессоров, циклы тепловых установок. Изложены основы теории и рассмотрены конструкции паровых и газовых турбин, двигателей внутреннего сгорания, а также компрессоров.  [c.672]

Термодинамика — наука, изучающая самые разнообразные явления природы, сопровождающиеся передачей или превращениями энергии в различных физических, химических, механических и других процессах. Термодинамика как наука сложилась в середине XIX в., когда в связи с широким развитием и использованием тепловых машин возникла острая необходимость в изучении закономерностей превращения теплоты в работу, создании теории тепловых машин, используемой для проектирования двигателей внутреннего сгорания, паровых турбин, холодильных установок и т. д. Поэтому основное содержание термодинамики прошлого столетия — изучение свойств газов и паров, исследование циклов тепловых машин с точки зрения повышения их к. п. д. В силу этого основным методом термодинамики XIX в. был метод круговых процессов. С этим этапом развития термодинамики связаны прежде всего имена ее основателей С. Карно, Б. Клапейрона, Р. Майера, Д. Джоуля, В. Томсона (Кельвина), Р. Клаузиуса, Г. И. Гесса и др.  [c.4]


Газотурбинные установки (ГТУ) также относятся, к двигателям внутреннего сгорания. В них рабочим телом служат газообразные продукты сгорания топлива, а двигателем является газовая турбина. В газотурбинных установках не применяют механизмы с возвратнопоступательным движением, используемые в поршневых две, что позволяет иметь агрегат большей мощности. Расширение рабочего тела в газовой турбине происходит до давления окружающей среды, в результате чего обеспечиваются более высокие КПД цикла, чем у поршневых двигателей.  [c.201]

В свою очередь циклы тепловых двигателей можно разделить в зависимости от рабочего тела на две группы. Общим для циклов первой группы является использование в качестве рабочих тел газообразных продуктов сгорания топлива, которые на протяжении всего цикла находятся в одном и том же агрегатном состоянии и при относительно высоких температурах считаются идеальным газом (двигатели внутреннего сгорания, газовые турбины и реактивные двигатели). Характерная черта циклов второй группы — применение таких рабочих тел, которые в цикле претерпевают агрегатные изменения (жидкость, влажный и перегретый пар) и подчиняются законам, действительным для реальных газов (паросиловые установки).  [c.104]

Введем ряд упрощений, подобных тем, которые были сделаны при изучении циклов двигателей внутреннего сгорания, а именно процессы сжатия и расширения будем считать происходящими по обратимым адиабатам, сгорание топлива заменим обратимым подводом теплоты, а выпуск горячих газов из турбины — обратимым отводом теплоты. При таких упрощениях можно считать, что газотурбинные установки работают Ио определенным циклам. Также примем, что рабочим телом является идеальный газ.  [c.252]

Высокие давления пара до 100 и 200 кг см , диктуемые необходимостью экономичности, требуют высокой температуры пара за котлом и промежуточного перегрева. В то время складывалось убеждение, что применение высоких давлений при наличии высоких температур ограничивается возможностями металлургии теплостойких сплавов. Перспективы роста к. п. д. паровой конденсационной станции начинают представляться неудовлетворительными. Наличие конденсационной установки связывает расположение станции по соседству с большими водоемами. Это ограничивает универсальность паросиловой станции. В качестве выхода из этого положения намечается возможность создания такого теплового двигателя, который может полностью использовать перспективные свойства большой угловой скорости турбинного колеса, но не имеет сложных агрегатов паросиловой установки, т. е. котла, конденсатора и сложного комплекса вспомогательного оборудования. Тепловым циклом такого турбинного двигателя определился цикл, аналогичный циклу поршневых двигателей внутреннего сгорания. По понятиям начала нашего столетия реальный тепловой цикл, осуществляемый в двигателе внутреннего сгорания, обладал наибольшим тепловым совершенством.  [c.99]

Продолжаются попытки осуществить парогазовый цикл путем комбинации обычного двигателя внутреннего сгорания с паровой турбиной [Л. 1-18].  [c.16]

Паросиловая установка использует турбину расширения и иногда турбокомпрессор в виде питательного насоса. Но в этом случае работа сжатия настолько мала по сравнению с работой расширения, что к. п. д. компрессора (насоса) не имеет существенного значения. Компрессор может здесь потреблять двойную работу обратимого сжатия без заметного влияния на к. п. д. цикла. Подобные условия в силовой установке внутреннего сгорания могут довести к. п. д. установки до нуля.  [c.155]

Самые большие в мире двигатели внутреннего сгорания, работающие по циклу Дизеля, имеют мощность 10—15 тыс. кет, т. е. значительно меньшую, чем достигнутые единичные мощности турбин. Число оборотов мощных дизелей невелико и составляет обычно 300—600 в минуту против 3 ООО оборотов в минуту у крупных паровых турбин. Это утяжеляет не только самые двигатели, ло и связанные с ними электрические генераторы.  [c.183]


Стремление повысить верхний температурный предел для получения более высокого к. п. д. привело к комбинированному газовому циклу, в котором в области высоких температур используется поршневой двигатель внутреннего сгорания, а в области умеренных температур—газовая турбина или газовая поршневая машина.  [c.243]

Образцовый цикл паросиловых установок (цикл Ренкина) с изоэнтропическим расширением можно отнести к процессам второй группы, т. е. к процессам внутренне обратимым, но внешне необратимым. Теплообмен в котельной установке между продуктами сгорания и кипящей водой является явным нарушением внешнего термического равновесия, так как он происходит обычно при огромных разностях температур между источником тепла я рабочим телом. Этот процесс необратимого теплообмена сопровождается значительным ростом энтропии системы и приводит к потере возможной работы по сравнению с обратимым протеканием процесса. Несмотря на это нарушение термического равновесия между рабочим телом и источником тепла, в большинстве случаев можно считать, что процесс внутренне обратим, так как внутри рабочего тела отклонения от равновесия сравнительно невелики. К процессам второй группы при термодинамическом анализе следует отнести также образцовые циклы двигателей внутреннего сгорания, циклы газовых турбин и обратные газовые циклы в холодильной технике.  [c.18]

Газовые турбины сочетают в себе высокие качества и преимущества, свойственные, с одной стороны, паровым турбинам быстроходность, компактность, большие мощности в одном агрегате, с другой стороны, — двигателям внутреннего сгорания возможность работать с высокими температурами цикла и, как следствие, с высокой экономичностью.  [c.328]

В ГТУ с замкнутым циклом (рис. 1.1) в отличие от двигателей внутреннего сгорания подготовка рабочего тела и его использование разделены по месту и времени. Газ при низких температуре и давлении поступает в компрессор К, где сжимается и направляется в газовый котел ГК. В котле, в котором сжигается органическое топливо, сжатый газ нагревается до высокой температуры. Подогретый газ высокого давления направляется в газовую турбину ГГ, где, расширяясь, совершает работу, передаваемую на вал установки. Часть работы затрачивается на привод компрессора, а остальная полезно используется для выработки электроэнергии в электрогенераторе ЭГ, отпускаемой потребителям.  [c.23]

ЦИКЛЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ И ГАЗОВЫХ ТУРБИН  [c.80]

Легковые автомобили повинны в этом меньше, чем оснащенный дизельными моторами грузовой транспорт. Когда в последнем десятилетии XIX века Рудольф Дизель разработал дизельный цикл , он, не подозревая этого, изобрел самый шумный двигатель внутреннего сгорания из всех известных до тех пор. Дизельный двигатель получил такое широкое признание, потому что он преобразует в работу большую долю данного количества тепла, чем любой другой. Несмотря на большую исходную стоимость, дополнительный вес и пониженную мощность при том же рабочем объеме, дизель оказался значительно экономичнее при длительной эксплуатации, чем бензиновые двигатели, и, конечно, он будет широко применяться еще многие годы. День, когда его заменят газовые турбины, электрические машины или ядерные двигатели, настанет очень не скоро. Поэтому ознакомимся подробнее с причинами шума, производимого двигателями внутреннего сгорания вообще и дизелем в частности.  [c.109]

Мы нашли для к. п. д. цикла газовой турбины выражение, аналогичное выражению для к. п. д. цикла двигателя внутреннего сгорания с подводом тепла в процессе при постоянном объеме ( 31).  [c.222]

Известно, что термический к. п. д. газотурбинных установок растет i увеличением степени повышения давления адиабатного сжатия Як и степени изохорного повышения давления X. Однако на пути развития и усовершенствования газотурбинных установок за счет повышения Як и Я, имеются большие препятствия. Дело в том, что с ростом Яе увеличиваются температуры конца сгорания 7з, в результате чего лопатки турбин разрушаются. Высокие температуры, не оказывающие почти никакого действия в поршневых двигателях внутреннего сгорания, оказывают разрушительное действие в газотурбинных установках. Это объясняется тем, что в цилиндрах поршневых двигателей высокие температуры держатся в течение небольшого периода времени по сравнению с временем, в течение которого совершается цикл. Кроме того, легко осуществляется охлаждение как цилиндров, так и поршней двигателя. Лопатки же турбинного колеса в течение работы турбины все время находятся под действием высоких температур, а охлаждение лопаток чрезвычайно затруднительно и весьма ограничено.  [c.180]

Процесс подвода тепла в идеальных циклах рассматривается без изменения химического состава рабочего тела. В реальных циклах подвод тепла осуществляется в процессе сгорания топлива. При этом в двигателях внутреннего сгорания рабочим телом являются продукты сгорания топлива, а в паровой турбине — пар высокого давления.  [c.41]

Подобно тому, как сгорание топлива в самом рабочем цилиндре газового двигателя, выдвинуло последний в качестве заменителя паровой машины, так и у паровой турбины наро дился, но еще не возмужал, конкурент — газовая турбина [1]. Приведенная формулировка повторяет убеждения Цейнера и Редшенбахера уже на новом более высоком уровне развития теплотехники. Опять как во времена Цейнера и Эриксона только на основе положения Карно предопределялось несовершенство парового цикла по сравнению с воздушным. Приведенная цитата [ 1 ] может быть названа основной формулировкой доказательств неизбежности замены паровой турбины турбиной внутреннего сгорания, сложившихся в 20—40-х годах  [c.199]


Коэффициент сопротиаления трения—График 472 Тугоплавкие смазки — см. Смазки консистентные тугоплавкие Турбины внутреннего сгорания — Циклы 53  [c.554]

Турбина внутреннего сгорания при = onst цикл ее изображен на фиг. 32— 34, где 1—2 — сжатие воздуха в компрессоре — изотермическое (фиг. 33) или адиабатическое (фиг. 34) 2—3 — подвод тепла при постоянном объеме.(сго-  [c.82]

Рабочим телом в паросиловой установке является вода, превращаемая в насыщенный, а затем в перегретый пар. Из перегревателя водяной пар поступает в турбину, где, расширяясь, производит полезную работу. Отработавший пар конденсируется, а конденсат при помощи питательного насоса вновь поступает в котел. В отличие от двигателей внутреннего сгорания в паросиловой установке продукты сгорания топлива непосредственно не участвуют в рабочем цикле, они являются лишь источником теплоты (тенлоотдатчиком).  [c.539]

Преимущество газовых турбин перед поршневыми двигателями внутреннего сгорания состоит в отсутствии инерционных усилий, вызываемых возвратно-поступательным движением поршня. Эти двигатели, кроме того, позволяют в небольших по размерам агрегатах создавать большие мощности. Препятствием к применению их в энергетике служат высокие температуры, которые не могут быть использованы при существующих конструкционных материалах. El поршневых двигателях эти высокие температуры газов действуют в течение небольшой доли цикла, в то всемя  [c.163]

Предложенные циклы принимаются идеальной абстракцией, к которой приближаются двигатели внутреннего сгорания с продолженным процессом расширения, как-то газовые турбины, двигатели с непосредственным воздействием давления газов на столб воды (например насосы типа Гёмфри).  [c.465]

Раздельное сжатие и расширение в газовой турбине, в отличие от двигателя внутреннего сгорания, позволяет произвести ряд мероприятий, направленных на увеличение ее эффективного к. п. д. Стремление уве-личиtь к. п. д. турбины привело к усложнению цикла газотурбинной установк I.  [c.106]

Все разобранные схемы составлены применительно к использованию турбомашин, но с достаточным основанием могут характеризовать и установки с поршневыми двигателями или генераторами газа. Так, в схеме по рис. 1-3, е паросиловая часть установки сохранит все свои характеристики, если утилизируемые отработавшие газы будут поступать не из ГТУ, а из глушителя двигателя внутреннего сгорания. Установка с использованием в паровой турбине пара, генерируемого в зарубашечном пространстве дизеля, совершает термодинамический цикл, сходный с циклом парогазовых установок по схеме рис. 1-3, б. Камеру сгорания в схемах с предвключенными газовыми турбинами (рис. 1-3, г) можно заменить свободнопоршневыми генераторами газа.  [c.24]

В области наименьших мощностей речь может идти об использовании в паровой турбине отходящего тепла поршневого двигателя внутреннего сгорания. В более крупных установках осуществимо сочетание в газовой части цикла турбины и свободнопоршневых генераторов газа — СПГГ.  [c.63]

F 01 [Машины или двигатели вообще, объемного вытеснения, например паровые машины — В роторные, с колебательным движением рабочих органов--С необъемного вытеснения, например паровые турбины — D) -Паросиловые установки, аккумуляторы пара, силовые установки с двигателями, двигатели, работающие на особых рабочих телах или по особым циклам L — РАСПРЕДЕЛИТЕЛЬНЫЕ механизмы для машин или двигателей М — Смазывание (машин и двигателей, двигателей внутреннего сгорания, продувка картера) N — Глушители выхлопа или выxJюпныe устройства (для машин или двигателей вообще, для двигателей внутреннего сгорания) Р —Охлаждение (лшшин или двигателей вообще, двигателей внутреннего сгорания)]  [c.37]

Двигатели внутреннего сгорания обладают двумя существенными преимуществами по сравнению с другими типами тепловых двигателей. Во-первых, благодаря тому что у двигателя внутреннего сгорания горячий источник тепла находится как бы внутри самого двигателя, отпадает необходимость в больших тенлообменных поверхностях, через которые осуществляется подвод тепла от горячего источника к рабочему телу. Это приводит к большей компактности двигателей внутреннего сгорания, например, по сравнению с паросиловыми установками. Второе преимущество двигателей внутреннего сгорания состоит в следующем. В тех тепловых двигателях, в которых подвод тепла к рабочему телу осуществляется от внешнего горячего источника, верхний предел температуры рабочего тела в цикле ограничивается значением температуры, допустимым для конструкционных материалов (так, например, повышение температуры водяного пара в паротурбинных установках лимитируется свойствами сталей, из которых изготовляются элементы парового котла и паровой турбины, — с ростом температуры, как известно, снижается предел прочности материала). В двигателях же внутреннего сгорания предельное значение непрерывно меняющейся температуры рабочего тела, получающего тепло не через стенки двигателя, а за счет тепловыделения в объеме самого рабочего тела, может существенно превосходить этот предел. При этом надо еще иметь в виду, что стенки цилиндра и головки блока цилиндров имеют принудительное охлаждение, что позволяет расширить тедшературные границы цикла и тем самым увеличить его термический к. п. д.  [c.319]

При ирочих равных у Словиях с изменением теплового заряда в циклах двигателей внутреннего сгорания и газовых турбин будет меняться эффективный к. п. д. в овя-зи с тем, что работа холо стого хода двигателя будет составлять различную долю от полезной работы дви- гателя.  [c.62]

Как правило, тепловые (машины (двигатели внутреннего сгорания, газовые турбины и паросиловые установки) работают по схеме, рассмотренной во втором случае, т. е. в них поток рабочего тела при расширении достигает давления среды ро раньше, чем температуры io В двигателях внутреннего сгорания, работающих открытым циклом (с выхлопом гззов нзружу), при этом неизбежна существенная потеря, связанная с тем, что температура отходящих газов значительно выше температуры окружающей среды. Эта потеря на рис. 4-4 может быть измерена отрезком М1В.  [c.68]

Многие тепловые двигатели из числа активно применяемых в наши дни относятся к числу "циклических" в связи с циклическим изменением запаса энергии (например, циклы Отто или Дизеля). Циклы Рэнкина (Rankin, для паровой турбины) и Брайтона (Bryton, для газовой турбины) и их различные варианты характеризуются постоянным тепловым потоком. Циклы Отто, Дизеля и Брайтона суть циклы внутреннего сгорания, при которых топливо сжигается в рабочем потоке, и поэтому наивысшая температура цикла достигается не посредством теплопереноса. Однако она зависит от свойств материала деталей, контактирующих с горячим потоком. В газовой турбине, где используется цикл Брайтона, камера сгорания и детали турбины контактируют с "постоянно горячим" рабочим потоком, тогда как в циклах Отто и Дизеля поток попеременно то горячий, то холодный. Следовательно, в циклах Отто и Дизеля пиковая температура может быть стехиометрической, а газовая турбина может приближаться к стехиометрическим температурам лишь настолько, насколько позволяют свойства использованных в ней материалов. В данной главе внимание сосредоточено на работе газовой турбины.  [c.49]



Смотреть страницы где упоминается термин Турбины внутреннего сгорания — Цикл : [c.54]    [c.81]    [c.2]    [c.16]    [c.53]    [c.221]    [c.113]    [c.447]    [c.656]   
Справочник машиностроителя Том 2 (1955) -- [ c.53 ]

Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.81 , c.82 ]



ПОИСК



К п внутренний цикла

Турбины — Циклы

Циклы газовых двигателей турбин внутреннего сгорания

Циклы газовых турбин и реактивных двигателей 10- 1. Циклы турбин внутреннего сгорания



© 2025 Mash-xxl.info Реклама на сайте