Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Внутренний относительный паровой турбины

Здесь с1 — относительный расход пара т, н, 1т. т, II — внутренняя работа паровой турбины, насоса, газовой турбины и компрессора Q и Qг — количество тепла, подведенного к 1 кг пара и 1 кг газа т) т, т) т, Чк и 11н — механические к. п. д. паровой и газовой турбин, компрессора и питательного насоса.  [c.24]

Относительный внутренний КПД паровой турбины  [c.331]


Внутренний относительный к. п. д. паровой турбины  [c.312]

Отношение действительной работы, совершаемой потоком пара в турбине, к теоретической называется внутренним относительным к. п. д. паровой турбины и обозначается Цд  [c.313]

Кпд турбины. Потери тепловой энергии внутри паровой турбины оцениваются относительным внутренним кпд турбины, который представляет собой отношение использованного теплоперепада Hi к располагаемому теплоперепаду в турбине Hq, т. е.  [c.131]

Задача 3.74. Конденсационная турбина с одним промежуточным отбором пара при давлении />., = 0,4 МПа работает при начальных параметрах пара ро = 4 МПа, /q = 425° и давлении пара в конденсаторе j, = 3,5 10 Па. Определить расход охлаждающей воды и кратность охлаждения для конденсатора паровой турбины, если расход конденсирующего пара Z), = 6,5 кг/с, температура охлаждающей воды на входе в конденсатор / = Ю°С, температура выходящей воды на 5°С ниже температуры насыщенного пара в конденсаторе и относительные внутренние кпд части высокого давления и части низкого давления  [c.142]

Задача 3.75. Конденсационная турбина с одним промежуточным отбором пара при давлении />п = 0,4 МПа работает при начальных параметрах пара Рй = Ъ МПа, /о=380 С и давлении пара в конденсаторе р = А 10 Па. Определить расход охлаждающей воды и кратность охлаждения для конденсатора паровой турбины, если расход конденсирующего пара Z>i=8,5 кг/с, температура охлаждающей воды на входе в конденсатор в=11°С, температура воды на выходе из конденсатора f = 21° относительный внутренний кпд части высокого давления /о, = 0,74 и относительный внутренний кпд части низкого давления 1, = 0,76.  [c.143]

Обязательным элементом ее являются устройства, в которых за счет подвода работы извне осуществляются процессы сжатия (компрессоры, турбокомпрессоры, насосы и т. д.), и устройства, в которых производится работа путем расширения (паровые и газовые турбины, турбодетандеры и т. д.). Реальные процессы расширения и сжатия сопровождаются потерями на необратимость и поэтому внутренний относительный к. п. д. каждого j-ro элемента системы находится следующим образом  [c.69]

Относительный внутренний к. п. д., характеризующий степень отклонения реальной турбины от идеальной у современных мощных паровых турбин, t],,, = 0,8... 0,9.  [c.241]


Величина внутреннего относительного к. п. д. паровой турбины зависит от ряда факторов типа конструкции, параметров рабочего процесса, пропуска пара, и при расчетных режимах лежит обычно в пределах 0,60 — 0,85. Меньшие значения величина ч . имеет при применении диска Кертиса, при высоком давлении или низком перегреве, при высокой влажности и малых пропусках пара. В гл. 2 вопрос  [c.32]

Коэффициент полезного действия цикла составлял 33% и к. п. д. станции 10% (при конденсационном режиме). По проекту к. п. д. цикла с начальным давлением ртутного пара 10 ата повышается до 55% и к. п. д. станции до 34%, что дает уменьшение удельного расхода топлива в три раза. Внутренний относительный к. п. д. ртутно-паровой турбины мощностью 4 ООО кет был принят в проекте рав-  [c.532]

Качество двигателя (в данном случае мы рассматриваем паровые турбины) определяется его внутренним относительным к. п. д. Величина как указано. выше в 15, ва-висит от параметров пара. Для более подробного выяснения влияния параметров пара удобно разбить турбину условно на три части по ходу расширения пара 1) часть высокого давления—от начальных параметров пара до давлений порядка 7—14 ага, 2) часть среднего давления.— от давлений 7—14 ата до давлений 1,2—2 ата и, наконец, 3) часть низкого  [c.44]

Характерным типом повреждений корпусных элементов паровых турбин является коробление корпусов ЦВД и ЦСД, вызывающее утечку пара — пропаривание через внутренний уплотняющий поясок и фланцы горизонтального разъема при эксплуатации. Как показали исследования [2], одним из основных факторов, влияющих на коробление корпусов, являются высокие пусковые температурные напряжения, вызывающие пластические деформации фланцев горизонтального разъема. В результате поверхность такого разъема имеет, как правило, волнообразную форму с наибольшим зазором, достигающим 2 мм. Особенно опасен такой тип повреждений для турбин АЭС, работающих при относительно низких температурах. Протечки влажного пара через неплотности разъема могут вызвать так называемую тепловую эрозию, которая в ряде случаев развивается со скоростью 2—5 мм за 10 ч [2].  [c.52]

В атом случае внутренний относительный к. п. д. паровой турбины онределяется следующим образом  [c.368]

Изменение давления пара в барабане рй осуществлялось в интервале от 80 до 160 ата. Коэффициент полезного действия установки в рассматриваемом интервале возрастает с увеличением давления примерно на 1,5 абс.%. Сравнительно малое изменение к.п.д. объясняется снижением внутреннего относительного к.п.д. паровой турбины вследствие уменьшения объемного расхода пара с ростом его давления. Кривая отчислений от капиталовложений в установку имеет минимум, соответствующий Рс = 80 ата минимум величины отчислений от капиталовложений  [c.145]

Пар высоких и тем более сверхвысоких начальных параметров находит применение на электростанциях с весьма мощными паровыми турбинами, расходующими большие количества пара, поскольку в этом случае возможна их работа с удовлетворительными по величине внутренними относительными к. п. д.  [c.329]

Парогазовая (и газовая) турбина в сравнении с паровой обладает рядом технических и технико-экономических преимуществ возможностью сосредоточения весьма больших мощностей в одном агрегате при сравнительно небольших габаритах и весе возможностью непосредственного соединения с компрессором или с электрическим генератором, неприхотливостью к сорту топлива, что позволяет использовать дешевые сорта газообразного и жидкого топлива быстротой пуска. Конструкция парогазовой (и газовой) турбины отличается простотой и надежностью и поэтому облегчает эксплуатацию и техническое обслуживание парогазотурбинных (и газотурбинных) установок. Относительный (внутренний) к. п. д. современных газовых (как и паровых) турбин достигает достаточно больших значений 0,85—0,88 [50].  [c.77]

ВТИ, ОРГРЭС, их филиалы и другие организации проводят тепловые испытания паровых турбин без регулируемых и с регулируемыми отборами пара. Эти испытания проводятся для проверки заводских (расчетных) гарантийных данных по удельному расходу тепла для определения относительных внутренних к. п. д. турбины и ее цилиндров, а также получения необходимых материалов для построения технических характеристик.  [c.102]


Указанные недостатки отсутствуют при паровом промежуточном перегреве конденсирующимся паром (рис. 4.11). Паровой перегрев можно выполнить, используя для этого некоторую часть свежего пара или пара из отбора турбины. Теплообмен в этом случае происходит при температуре не выше критической (около 647 К) или немного выше (при сверх-критическом начальном давлении свежего пара). Это определяет невысокую возможную температуру промежуточного перегрева пара, соответственно пониженное его давление и малый энергетический эффект. Теоретически при низком давлении промежуточного перегрева возможно даже снижение термического КПД теоретического цикла. Однако повышение внутреннего относительного КПД ступеней турбины в связи с уменьшением конечной влажности пара приводит в конечном счете к повышению КПД турбоустановки на 2—3% благодаря паровому промежуточному перегреву.  [c.42]

В процессе исследования показателей тепловых схем ПГУ-КЭС на базе указанных типов ГТУ было установлено, что при условии постоянства принятого внутреннего относительного КПД проточной части паровой турбины расход выходных газов ГТУ не оказывает влияния на качественный характер изменения тепловой экономичности ПГУ. Изменение расчетного значения избытка воздуха в газах ГТУ в рабочем диапазоне при прочих равных условиях также не оказывает заметного влияния на характер изменения КПД ПГУ-КЭС. Эти положения, а также анализ полученных результатов расчета  [c.342]

Заметное влияние на энергетические характеристики ПГУ оказывают такие параметры, как температурные напоры на холодном конце испарителя 0 и на горячем конце пароперегревателя 0f,g КУ, внутренний относительный КПД проточной части паровой турбины tIq, и влажность пара в ее последних ступенях. Характер этого влияния отражен на рис. 8.50 для тепловой схемы (см. рис. 8.46, в). В реальных условиях экономичность установки ниже, чем в идеальных.  [c.344]

По сравнению с другими типами тепловых двигателей (паровыми машинами, двигателями внутреннего сгорания и газовыми турбинами) паровые турбины имеют ряд суш ественных преимуществ постоянная частота вращения вала, возможность получения частоты вращения, одинаковой с частотой вращения электрогенератора, экономичность работы и большая концентрация единичных мощностей в одном агрегате. Кроме того, паровые турбины относительно просты в обслуживании и способны изменять рабочую мощность в широком диапазоне электрической нагрузки.  [c.185]

Посадки с тепловыми зазорами применяют в двигателях внутреннего сгорания, паровых и газовых турбинах, турбокомпрессорах, в тепловых приборах и других устройствах, где в рабочем состоянии зазор уменьшается из-за неодинакового теплового расширения охватывающей и охватываемой деталей при одинаковых или неодинаковых коэффициентах линейного расширения их материалов. Если индекс а присвоить охватывающей детали, индекс Ъ — охватываемой детали, буквой Т обозначить температуру в рабочем состоянии, а г] — относительный горячий зазор (в миллиметрах на  [c.340]

Внутренний относительный к. п. д. паровой турбины питатель-  [c.483]

На крупных современных электростанциях основным тепловым двигателем является паровая турбина. Паровые поршневые машины также имеют относительно широкое распространение на железнодорожном и водном транспорте и в некоторых других областях народного хозяйства. В этих тепловых двигателях в качестве рабочего тела используется водяной пар. Появление и распространение газовых двигателей (двигатели внутреннего сгорания, газовые турбины, реактивные двигатели) не уменьшило и не может уменьшить значения водяного пара как рабочего тела. Достаточно сказать, что около /з всей электроэнергии вырабатывается на тепловых электростанциях. Водяной пар является пока что единственным рабочим телом, практически используемым в атомных теплосиловых установках.  [c.166]

Значения относительного внутреннего к. п. д. паровых турбин находятся в пределах 0,7-н0,88.  [c.133]

Задача 3.75. Конденсационная турбина с одним промежуточным отбором пара при давлении рп=0,4 МПа работает при начальных параметрах пара ро=3 МПа, =380° С и давлением пара в конденсаторе / н=4Х Х10 Па. Определить количество охлаждающей воды и кратность охлаждения для конденсатора паровой турбины, если количество конденсирующегося пара /) = =8,5 кг/с, температура охлаждающей воды на входе в конденсатор i =П°С, температура воды на выходе из конденсатора / =21° С, относительный внутренний к. п. д. части высокого давления Т1 ,. =0,74 и относительный внутренний к. п. д. части низкого давления = =0,76.  [c.148]

В целом КПД ТЭС т)тэс. кром величины т),, включает в себя внутренний относительный т о, и механический т] КПД турбины (см. гл. 20), а такжг КПД электрического генератора т],,, трубопроводов г тр (который учитывает ютери теплоты трубопроводами ТЭС) и парового котла т к  [c.187]

Подвод теплоты осуществляется на изобаре р — линия 5—4—6—1 (рис. 11.5), причем на участке 5—4 вода нагревается до температуры насыщения, на участке 4—6 происходит процесс парообразования и на участке 6—1 — процесс перегрева пара. Хотя процесс расширения пара осуществляется до того же давления р2, что и при рассмотрении циклов Карно и Ренкина насыщенного пара, точка 2 при расширении перегретого пара расположена блид<е к пограничной линии х = 1, чем в случае расширения до давления насыщенного пара. Это значит, что в конце процесса расширения перегретый пар имеет большую сухость, или, что то же, содержит меньше влаги при прохождении через проточную часть паровой турбины. В результате сокращаются необратимые потери на трение в процессе расширения пара, повышается внутренний относительный к. п. д. турбины. Цикл Ренкина на перегретом паре является основным циклом современных теплоэнергетических установок.  [c.166]


Л2 в идеальном двигателе. Отношение удельной действительной работы 4 к теоретической 4 называется относительным внутренним к. п. д. теплового двигателя т1о1. Для паровой турбины  [c.121]

При экономической нагрузке 80 мгвт и противодавлении 0,04 ama выходная потеря составляет немногим более 8 ккал1кг. Несмотря на значительные выходные потери, неизбежные, впрочем, в турбинах предельной мощности, относительный внутренний к. п. д. турбины достаточно высок r = 0,78 при экономической нагрузке. Механические потери составляют меньше 0,5%, что характерно для паровых турбин большой мощности.  [c.201]

Величина внутреннего относительного к. п. д. у современных мощных паровых турбин высоких параметров составляет irij, = 0,854-0,90.  [c.368]

Принимая, что относительный внутренний КПД проточной части паровой турбины rioi = 0,80—0,90, можно получить ап у = 0,10—0,25, где меньшее значение соответствует более совершенной проточной части паровой турбины.  [c.329]

Другим принципиально отличным примером с точки зрения скорости преобразования тепловой энергии и концентрации тепловых потоков в условиях эксплуатации теплоэнергетического оборудования являются паровые турбины [74, 89]. Динамика теплового состояния паровой турбины в условиях эксплуатации может быть охарактеризована, например, температурой наиболее напряженной зоны корпуса цилиндра высокого давления (ЦВД) (рис. 1.3, в). С учетом теплового состояния и скорости изменения температуры в этой детали эксплуатационные режимы паровой турбины можно разделить на три группы со сравнительно медленным (до 10° С/мин) изменением теплового состояния корпуса при пуске (прогрев трубопроводов, холостой ход, нагружение турбины) и останове (принулите.пьное охлаждение, естественное остывание) с резким (до 15° С/с) изменением температуры при пуске (толчок роторов, прикрытие регулирующих клапанов в процессе нагружения турбины) и останове (аварийный или плановый сброс, увеличение нагрузки, отключение турбогенератора от сети) стационарный (ква-зистационарный) с относительно установившимися значениями параметров пара (при частичных и номинальных нагрузках). При этих режимах температура внутренней стенки (см. рис. 1.3, в) изменяется циклически разогрев до рабочей температуры (около 500°С), выдержка 2...4 ч на стационарном режиме при этой же  [c.9]

Как подсчитать внутреннюю Ni и эффективную Ng мощность паровой турбины, относительный эффективный КПДт),, турбины, удельный эффективный ge расход пара  [c.259]

В многоступенчатых турбинах пар или газ расширяется в последовательно расположенных ступенях давления (см. рис. П.20 и П.36), поэтому весь перепад энтальпий в них распределяется на ряд ступеней давления. Выбирая определенное число ступеней, можно в каждой ступени получить достаточно малые перепады энтальпий, а следовательно, и малые скорости истечения Сг 1см. формулу (ПЛ6)]. Тогда можно выбрать и сравнительно малые окружные скорости и, однако так, чтобы отношение ы/Сх было достаточно большим — близким к тому, которому соответствует максимальное значение т1ол. В результате получатся высокие значения относительного внутреннего к. п. д. ступени, так как станут сравнительно небольшими основные потери в ступени потери в соплах — вследствие малых значений с потери с выходной скоростью и на рабочих лопатках — вследствие приближения отношения м/с к значению, отвечающему максимуму Цол (см. рис. П.31) потери вентиляционное и на трение диска о пар в активных ступенях паровых турбин с парциальным подводом пара — вследствие малых значений и. Это подтверждает рис. 11.34, на котором нанесена кривая Ст. в в зависимости от /с вследствие сравнительно небольших значений Ст. в кривая т)о, приближается к кривой т]ол с соответствующим возрастанием максимума т о, (потери от утечек, не зависящие от i / , не учтены).  [c.175]

Данные табл. 4-29 получены при тех же значениях внутреннего относительного к. п. д. газовых турбин и адиабатического к. п. д. компрессора, что и для МГДУ. Так же выбраны значения механических к. п. д. и к. п. Д. генератора электрического тока. Внутренний относительный к. п. д. паровой турбины принят равным 0,86.  [c.293]


Смотреть страницы где упоминается термин Внутренний относительный паровой турбины : [c.132]    [c.141]    [c.612]    [c.176]    [c.29]    [c.216]    [c.221]    [c.329]    [c.351]    [c.254]    [c.133]    [c.172]   
Техническая термодинамика Изд.3 (1979) -- [ c.368 ]



ПОИСК



Внутренний относительный КПД

К турбины внутренний относительный

Турбина паровая

Турбины Паровые турбины

Турбины паровые



© 2025 Mash-xxl.info Реклама на сайте