Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термореактивные полимеры и пластмассы

ТЕРМОРЕАКТИВНЫЕ ПОЛИМЕРЫ И ПЛАСТМАССЫ  [c.157]

Термореактивными называют такие полимеры и пластмассы, которые при нагреве и формовании претерпевают существенные химические изменения, затвердевают и теряют способность пластически деформироваться при повторном нагреве.  [c.62]

При проектировании изделий из термореактивных полимеров и слоистых пластмасс их свойства можно значительно изменять применяя соответствующие наполнители.  [c.493]


Последнее десятилетие характеризуется непрерывным ростом производства полимеров с различными химическими, физическими, механическими и другими свойствами и разработкой методов их соединений сваркой. Однако пока еще является проблемой сварка термореактивных полимеров, хотя исследования, проводимые в некоторых организациях, дают обнадеживающие результаты. Детали из термореактивных пластмасс, как правило, соединяются склеиванием.  [c.141]

Термореактивные пластмассы на основе термореактивных полимеров (смол) после тепловой обработки — отверждения — переходят в термостабильное состояние. Термореактивные пластмассы отличаются хрупкостью, имеют большую усадку 10—15% и содержат в своем составе наполнители.  [c.225]

По характеру связующего вещества все пластмассы делятся на термопластичные (термопласты) и термореактивные (реактопласты). Термопластичные получены на основе термопластичных полимеров. Они хорошо перерабатываются в изделия, характеризуются значительной упругостью и малой хрупкостью. Обычно термопласты изготовляют без наполнителя. Термореактивные пластмассы изготовляются на основе термореактивных полимеров. Они отличаются хрупкостью, при переработке часто дают большую усадку, поэтому в них необходимо вводить усиливающие наполнители.  [c.236]

Все полимеры при отверждении дают усадку она минимальна у эпоксидных полимеров (0,5 - 2%) и особенно велика у полиэфиров ( 10 %). Для уменьшения усадки и повышения прочности используют наполнители и регулируют условия отверждения. Отверждение эпоксидных и полиэфирных пластмасс не связано с выделением побочных веществ, поэтому при изготовлении изделий нет надобности в больших давлениях. Эти пластмассы пригодны для изделий больших размеров. Если при отверждении выделяются низкомолекулярные вещества (например, у фенопластов), то изделия получают под давлением во избежание образования вредной пористости и других дефектов. При переработке фенолоформальдегидных и некоторых других пластмасс необходимые давления велики — в пределах 10 - 100 МПа, поэтому размеры изделий ограничены техническими возможностями прессового оборудования. Все термореактивные полимеры после отверждения имеют низкую ударную вязкость и поэтому используются с наполнителями.  [c.392]

В зависимости от применяемых синтетических полимеров и способности плавиться при нагревании пластмассы делят на термореактивные (реактопласты) и термопластические (термопласты).  [c.46]

Фаолит представляет собой термореактивную кислотоупорную пластмассу, получаемую на основе феноло-формальдегидной резольной смолы (полимер класса Б) и кислотостойкого наполнителя (асбест с графитом или кварцевым песком или только асбест). Варьируя видом наполнителя и количественным соотношением между полимером и наполнителем, можно получать изделия, различные по физико-механическим свойствам и кислотостойкости.  [c.643]


Пластмассы, основанные на термореактивных полимерах, при нагревании размягчаться не могут, поэтому они не могут и свариваться.  [c.159]

В тех случаях, когда требуется особая гибкость и термореактивные свойства кабельных оболочек, резиновая изоляция еще не может быть заменена пластмассовой. Однако за последние годы появились материалы, обладающие свойством пластмасс и приобретающие термореактивные свойства,— это целая область сшитых полимеров и в первую очередь полиэтилена.  [c.277]

По характеру связующего вещества пластмассы классифицируют на термопластичные, получаемые на основе термопластичных полимеров, и термореактивные — на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1—3%). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя.  [c.406]

По хара< теру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты) - на основе термореакТивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку прц формовании (1 — 3%). Материал отличается большой упру-  [c.395]

В зависимости от условий отверждения, особенно поведения при нагреве, полимеры и соответствующие цм пластмассы подразделяют на термореактивные и термопластичные.  [c.818]

Слоистые пластмассы — материалы, армированные параллельно расположенными слоями листового наполнителя бумаги, ткани и т. п. (табл. 22). Наибольшую прочность имеют стеклотекстолиты, наиболее высокую теплостойкость — асботекстолиты. В качестве связующего применяют термореактивные полимеры — фенолоформальдегидные, эпоксидные, кремнийорганические, полиэфирные и другие смолы. Наиболее распространенными и дешевыми являются фенолоформальдегидные смолы. Они имеют хорошую адгезию к большинству наполнителей, термостойки, но требуют сравнительно высоких давлений при формировании изделий. Кремнийорганические смолы имеют хорошую водостойкость, термостойкость, обеспечивают повышенные диэлектрические свойства их высокий коэффициент линейного расширения снижает механические свойства материала.  [c.819]

Для улучшения физико-механических свойств пластмасс, в частности прочности к динамическим и статическим нагрузкам, твердости и т. д., а также уменьшения усадки при отверждении термореактивных полимеров в них добавляется наполнитель. В качестве наполнителей используют волокнистые материалы (стеклоткань, стекловолокно, асбестовое волокно, бумага и т. д.) и порошкообразные вещества (кварцевая, асбестовая и древесная мука и т. д.). Наполнители в основном используются в термореактивных полимерах.  [c.134]

Пластмассы — композиционные материалы, основой которых являются полимеры, определяющие главные свойства и выполняющие роль связующего, соединяющего все компоненты материала в монолит. Остальные компоненты — наполнители, пластификаторы, стабилизаторы и другие — при введении в неполярные полимеры снижают их электроизоляционные свойства. Поэтому пластмассы на основе таких полимеров — отличных диэлектриков — состоят практически только из связующего. В табл. 23.12 приведены свойства термопластичных полимерных органических диэлектриков и материалов на их основе, в табл. 23.13 — свойства термореактивных пластмасс, а в табл. 23.14 — слоистых пластиков с листовым (рулонным) наполнителем.  [c.557]

Пластмассы подразделяются на термопластичные и термореактивные по реакции на теплоту. К термопластичным относятся пластмассы с линейной или разветвленной структурой полимеров, свойства которых обратимо изменяются при многократном нагревании и охлаждении. К термореактивным пластмассам относятся полимеры, в которых при термическом воздействии возникают реакции химического связывания цепных молекул друг с другом с образованием сетчатого строения. Такие пластмассы не могут переходить в пластичное состояние при повышении температуры без нарушения пространственных связей в структуре полимера.  [c.27]

Кроме связующих и наполнителей применяют пластификаторы— Л-чя улучшения технологических и эксплуатационных свойств пластмасс. Пластификаторы также увеличивают холодостойкость пластмасс и устойчивость их к воздействию ультрафиолетового излучения. В некоторых пластмассах содержание пластификатора может достигать 30—40%. На определенных стадиях переработки в пластмассы добавляют сшивающие реагенты , различные инициаторы полимеризации в сочетании с ускорителями и активаторами, красители различных классов и неорганические пигменты. В некоторые пластмассы вводятся стабилизаторы — химические соединения, способствующие длительному сохранению свойств пластмасс и повышению стойкости пластмасс к воздействию теплоты, света, кислорода воздуха. По способности к формованию полимерные материалы подразделяются на две группы термопластичные (термопласты) и термореактивные (реактопласты). При формовании изделий из термопластов химический состав полимеров не изменяется, а в реактопластах происходит изменение их структуры и состава.  [c.216]


Солнечное излучение представляет собой электромагнитные волны с длинами 0,2—5 мкм. На ультрафиолетовую область (длина волны до 0,4 мкм) приходится 9 % энергии, на видимую (длина волны 0,4—0,7 мкм) — 41 % и на инфракрасную область с длинами волн более 0,72 мкм — 50 % солнечной энергии. Влияние солнечного излучения на изделие заключается в химическом разложении некоторых органических материалов. Наибольшее воздействие оказывают ультрафиолетовые лучи, которые обладают высокой энергией. Под действием этих лучей происходит поверхностное окисление материалов, частичное разложение полимеров, содержащих хлор, расщепление органических молекул, быстрое старение пластмасс, изменение важнейших органических компонентов и цвета у некоторых типов термореактивных пластмасс, образование корки на поверхности резины и ее растрескивание.  [c.15]

Фенопласты — термореактивные пластмассы, получаемые на основе фене ло альдегидных смол. В зависимости от наполнителей существует весьма широкий ассортимент фенопластов. С учетом совмещенных композиций с каучуком и другими полимерами число марок фенопластов достигает двухсот.  [c.258]

Необходимо также подчеркнуть влияние надрезов на усталость пластмасс. У большинства материалов усталостная прочность снижается в месте надреза вследствие концентрации напряжений в этом месте. Это особенно относится к материалам с большой чувствительностью к надрезам, какими являются термореактивные пластмассы, не содержащие волокнистых наполнителей [21], и аморфные полимеры в области стеклообразного состояния (рис. 73) [21 и 22].  [c.62]

Типичным примером зависимости ударной вязкости пластмассы от прочности являются армированные термореактивные смолы. Полиэфирные, эпоксидные, фенолформальдегидные и прочие термореактивные смолы — хрупкие аморфные полимеры. Благодаря присутствию армирующих наполнителей материал при нагрузке ударом обладает способностью гасить кинетическую энергию и несколько деформироваться за счет снижения силы сцепления между смолой и армирующими элементами.  [c.70]

Полимерные пластические материалы — искусственные материалы, получаемые на основе природных или синтетических высокомолекулярных полимеров при нагреве путем формования в размягченном состоянии под давлением и с последующим переходом в твердое состояние сформованной массы при дальнейшем ее нагревании (термореактивные) или охлаждении (термопластичные). В инженерной практике такие материалы называются пластмассами.  [c.361]

По Характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты), получаемые на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1—3 %). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).  [c.450]

ГазоБОЗдушные (ячеистые) пластмассы получают из термопластичных и термореактивных полимеров химическим и физическим способами. При химическом способе ячеистая газонаполненная структура образуется при термическом разложении газообразователей или взаимодействии компонентов, при физическом способе — в результате интенсивного расширения растворенных газов при снижении давления или повьппе-  [c.374]

Источниками сырьй для изготовления пластмасс служат природный газ, продукты нефти, уголь, древесина. Эти источники доступны и дешевы. Основой, определяющей свойства пластмасс, являются полимеры, которые делятся на две группы термопластичные и термореактивные. Первые из них при нагревании размягчаются, а при охлаждении твердеют, при повторных нагревах эти полимеры (смолы) сохраняют способность размягчаться и отверждаться. В группу термопластичных пластмасс входят полиэтилен (высокого давления — ПЭВД, низкого давления — ПЭНД), полистрол, фторопласты, органические стекла. Термореактивные полимеры, именуемые поликонденсационными смолами, при нагревании (до 150—180 °С) в результате химической реакции переходят в твердое, необратимое состояние. При этом из нитевидных молекул полимеров образуются пространственные жесткие конструкции . Термореактивными являются следующие полимеры фенолоформальдегидные (например, бакелитовая смола, фенопласт), полиэфирные, эпоксидные и кремний-органические.  [c.119]

Слоистые пластмассы вследствие высокой прочности широко применяются в машиностроении как конструкционный материал. Слоистые пластмассы представляют собой композиции, состоящие из волокнистых наполнителей, в виде тканей (хлопчатобумажных и стеклянных), бумаги или наполнителей в виде нитей, пропитанных связующим веществом, обычно термореактивным полимером. Наиболее распространенными полимерами для изготовления слоистых пластиков являются фенольноформальдегидные смолы — бакелит.  [c.495]

Сварка пластмасс. Основвые технические и технологические свойства пластмасс определяются физико-химическими свойствами связующих веществ (смол), которые в зависимости от их поведения при нагревании разделяются на две основные группы термореактивные полимеры, которые, будучи однажды нагреты до определенной температуры, переходят в неплавкое и нерастворимое состояние термопластичные полимеры, которые при нагревании размягчаются, а при последующем охлаждении возвращаются в исходное состояние. Свариванию, таким образом, можно подвергать только детали, изготовленные из термопластичных материалов.  [c.148]

Термореактивные пластмассы (полимеры)—реак-топласты при отверждении, образуя пространственную структуру макромолекул, претерпевают необратимые изменения и переходят в твердое, неплавкое и нерастворимое состояние. Отверждение может происходить при нагреве до 150—300° С (выше Гт) в течение определен ного времени, под давлением или без давления, при невысоком нагреве до 60—70° С или без нагрева, в присутствии добавок отвердителей. Некоторые реактопла-сты выпускают в виде жидких веществ, что удобно для пропитки тканевых и волокнистых наполнителей. Наиболее распространенные термореактивные полимеры фенолоформальдегидные, эпоксидные, кремнийоргани-ческие, полиэфирные.  [c.818]


Для производства деталей применяются обычно следующие термореактивные полимеры фенолформальдегидные, мочевиноформальдегидные и меламинформальдегидные под общим названием аминопластов, анилинформальдегидные (последние применяют и без наполнителя в качестве высокочастотного материала) и кремнийорганические. Для пластмасс на основе фенолформальдегидных полимеров (фенопластов) с неорганическими наполнителями длительно допустимая рабочая температура составляет 130—150° С, кратковременно— до 215° С при допущении снижения прочности на изгиб и удельной ударной вязкости на 10%. При этой температуре обычно возникает дополнительная усадка около 6%. Фенопласты с органическими наполнителями допускают при длительной работе температуру 100—110° С, кратковременно — 115—135° С с такой же дополнительной усадкой, как указано выше.  [c.199]

К термореактивным полимерам следует отнести феноло-формальдегндную, полиэфирную, эпоксидную, кремний-органнческую смолы, которые в отвержденном состоянии имеют сетчатую структуру макромолекул. Названные смолы имеют невысокую механическую прочность и в чистом виде в машиностроении не используются. Смолы широко применяют в качестве связующего для изготовления пресс-порошков, стекловолокнитов, стекло-текстолитов, текстолитов, углепластиков и др. В композиционных пластмассах содержание смолы достигает 30—50 %. Из перечисленных смол наибольшей механической прочностью обладают эпоксидные смолы, наиболее дешевыми являются фенолоформальдегидные смолы. Кремнийорганическая смола обладает наибольшей теплостойкостью. Фенолоформальдегидные смолы требуют для своего отверждения повышенные давление и температуру. Полиэфирные и эпоксидные смолы могут отверждаться при нормальной температуре и без давления.  [c.460]

В практике пластическими массами называют твердые, прочные и упругие материалы, получаемые из полимерных соединений и формуемые в изделия методами, основанными на использовании их пластических деформаций. Они представляют собой смесь полимерного материала с различными ингредиентами, добавляемым и для улучшения различных свойств полимера пластификаторов, наполнителей стабилизаторов, антиоксидантов, красителей и замутнителей. Для термореактивных полимеров в комплекте поставляется сшивающий агент и в зависимости от условий хранения и переработки ускорители или замедлители отверждения. Пластификаторы добавляют в полимерные материалы для увеличения пластичности, а также для снижения температуры, при которой полимер переходит в текучее состояние. В качестве пластификаторов используют вязкие жидкости с высокой температурой кипения и с низкой летучестью паров. Проникая внутрь полимерного материала, пластификатор как бы раздвигает макромолекулы друг от друга, ослабляя межмолекулярное взаимодействие. В качестве пластификаторов в настоящее время в основном применяются эфиры фталевой кислоты (дибутилфталат, диамил-фталат и т. д.) и фосфорной кислоты (трифенилфосфат, трикрезилфос-фат). Однако жидкие пластификаторы со временем улетают из полимерной композиции, материал становится хрупким. Кроме того, в образующиеся поры проникают агрессивные среды (при их контакте с пластмассой), ускоряя разрушение. Поэтому в настоящее время в качестве пластификаторов стремятся использовать воскоподобные синтетические вещества (например хлорированные парафины), а также добавки к пластическим массам небольших количеств синтетических каучуков.  [c.134]

Склеивание материалов на основе термореактивных полимеров. Технология склеивания термореактивных пластмасс состоит из обычных операций подготовки поверхности, нанесения клея, открытой выдержки для удаления растворител я если клей содержит растворитель, то необходима и выдержка клеевого соединения под давлением.  [c.92]

Полимерами (основа пластмасс) называют вещества высокой относительной молекулярной массы не менее 10 тыс, молекулы которых образованы одинаковыми группами атомов — звеньями В зависимости от вида связей между молекулам полимеры разделяют па термоп 1астпчпые и термореактивные  [c.60]

По реакции на тепловое воздействие полимера-основы пластмассы подразделяются на термопластичные (термопласты) и термореактивные (ре-актопласты).  [c.143]

Существует значительное ко.яичество неметаллических материалов, которые успешно могут заменить металлы и их сплавы. Все более широкое применение получают различные виды полимеров (пластмасс), которые благодаря своим особым физическим и механическим свойствам позволяют использовать их для литья под давлением, прессования, формовки из листов, сварки, склеивания, наплавления и других технологических процессов изготовления деталей. Полимерные материалы (пластмассы) подразделяются на две группы термопластичные и термореактивные.  [c.188]

Природные смолы и синтетические полимеры (высокомолекулярные соединения) применяют для получения электроизоляциопных лаков, эмалей, компаундов, пластмасс, пленочных, волокнистых и других материалов. Природные смолы и синтетические полимеры бывают термопластичные (после действия нагрева не теряют способности плавиться и растворяться в подходящих растворителях) и термореактивные (после нагрева становятся неплавкими и нерастворимыми). Синтетические полимеры получаются с помощью реакций двух типов  [c.549]

Многие машиностроительные материалы представляют собой тот или иной вид композиционных материалов. Например, сталь подвергают окраске, чтобы увеличить стойкость к разрушительному действию коррозии. Стволы первых артиллерийских орудий изготовляли из дерева, а затем дерево скрепляли с латунью, чтобы повысить их стойкость к воздействию внутреннего давления. Прочность бетона повышается при использовании армируюш их стержней. Возникновение промышленности, производящей пластмассы, относят к 1868 г., когда Хайдтом был открыт целлулоид. Вслед за этим в 1909 г. Бикландом была получена фенолформальдегидная смола, в 1938 г. появился найлон. В 1942 г. впервые были изготовлены полиэфиры и полиэтилен. В 1947 г. появились эпоксидные смолы и полимеры на основе сополимера акрилонитрила, бутадиена и стирола [3]. В начале 50-х годов для защиты от коррозии стали использовать термореактивные пластмассы. В это же время началось впервые изготовление коррозионно-стойкого оборудования. Судостроительная промышленность явилась первым крупным потребителем и изготовителем армированных пластиков. Армированные пластики не получили бы такого широкого распространения, которое они имеют в настоящее время, не будь заинтересованности судостроительной промышленности. Долгое время отсутствовала информация об этих материалах, однако, в конечном счете, основные необходимые сведения об армированных пластиках как конструкционных материалах были получены от самих судостроителей.  [c.310]

Антифрикционные пластмассы в узлах трения начали применять в тек-столитах термореактивных пластмассах на основе фенолформальдегнд-ных смол и хлопчатобумажных тканей. Текстолиты использованы для изготовления наборных подшипников скольжения для работы со смазыванием водой, а также для нарезания зубчатых колес и кулачковых передач. Позднее был освоен выпуск специальных антифрикционных реактопластов для подшипников, работающих без смазки. С появлением высокотехнологичных антифрикционных термопластичных полимеров антифрикционные реакто-пласты утратили ведущее положение. Однако когда к узлам предъявляют повышенные требования по жесткости, размерной стабильности и теплостойкости, пластмассы на основе термореактивных связующих применяют довольно широко, в частности в химическом и металлургическом оборудовании, водном и железнодорожном транспорте [9, 21 ].  [c.55]


Пластмассы получают на основе высокомолекулярных соединений — полимеров. Их разделяют на два класса — термопласты и реактопласты. Термопласты (термопластичные пластмассы) при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние. Реактопласты (термореактивные пластмассы) отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают свои исходные свойства. Основные методы переработки термопластов — литье под давлением, экструзия, вакуумформование, пневмоформование реактопластов — прессование н литье под давлением. Пластмассы являются весьма эффективными конструкционными материалами современной техники.  [c.139]


Смотреть страницы где упоминается термин Термореактивные полимеры и пластмассы : [c.13]    [c.42]    [c.181]    [c.62]    [c.34]    [c.192]    [c.196]    [c.18]   
Смотреть главы в:

Материаловедение  -> Термореактивные полимеры и пластмассы



ПОИСК



Пластмасса термореактивная

Пластмассы на основе термореактивных полимеров

Полимерия

Полимеры

Полимеры термореактивные



© 2025 Mash-xxl.info Реклама на сайте