Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Высокочастотные материалы

Высокочастотные материалы с диэлектрической проницаемостью выше 12  [c.76]

Высокочастотные материалы с диэлектрической проницаемостью ниже 9  [c.76]

Высокочастотные материалы 1—280 Высокоэластическая деформация 1—269 3—18, 89  [c.500]

Высокочастотные материалы для печатных плат  [c.349]

Фольгированные высокочастотные материалы 553  [c.553]

ФОЛЬГИРОВАННЫЕ ВЫСОКОЧАСТОТНЫЕ МАТЕРИАЛЫ  [c.553]

Фольгированные высокочастотные материалы  [c.555]

Обычно дипольный момент для связей С—С п С—Н очень мал или равен нулю дипольный момент для связей С—С1, С—N и С—5 велик. Поэтому, когда желательно получить материал с малым дипольным моментом, следует подбирать химические соединения, состоящие только из углерода и водорода. Для высокочастотных материалов предпочтительны высокомолекулярные соединения, состоящие из углерода п водорода. Так как  [c.26]


Электроизоляционные свойства. Пластические материалы, за исключением специальных композиционных пластиков — полистирола, тефлона и им подобных высокочастотных материалов, при длительной эксплуатации плохо переносят воздействие электрического поля высокой частоты, поэтому они при.меняются преимущественно как диэлектрики при частоте тока 50 гц. Величина электрической пробивной прочности пластических масс зависит от температуры, толщины материала и влажности.  [c.345]

Электроэрозионные методы обработки основаны на законах эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока, К этим методам относят электроискровую, электроимпульсную, высокочастотные электроискровую и электроимпульсную и электро-контактную обработку.  [c.401]

Магнитодиэлектрики необходимы для изготовления сердечников высокочастотных магнитных систем катушек индуктивности фильтров генераторов контуров радиоаппаратуры, поскольку листовые и ленточные магнитномягкие материалы при больших частотах (свыше 100 кгц) не могут быть применимы вследствие резкого падения магнитных свойств.  [c.280]

Ультразвуковую сварку (частота колебаний 20 — 30 кГц) применяют для соединения цветных металлов и пластиков. Детали сжимают вибрирующим зажимом 1, соединенным волноводом 2 с магнито-стрикционным генератором колебаний 3. Высокочастотные колебания вызывают нагрев стыка и диффузионное взаимопроникновение атомов соединяемых материалов.  [c.165]

Сварочные установки. К сварочным высокочастотным устройствам предъявляются особые требования в отношении надежности, так как выход из строя какого-либо элемента установки приведет к остановке всего стана и к большим материальным потерям. Высокая надежность обеспечивается резервированием элементов (индукторов, ламп и др.), применением высококачественных узлов и материалов, быстродействующей защитой, блочным исполнением оборудования.  [c.216]

Полистирол широко применяется для изготовления деталей электро- и радиоэлектронных приборов, в кабельной промышленности в качестве высокочастотного электроизоляционного материала, для изготовления полистирольных лаков. Перерабатывается в изделия всеми способами, используемыми для термопластичных материалов. Основной метод переработки в изделие — литье под давлением.  [c.207]

Общим требованием к большинству керамических высокочастотных материалов, по сравнению с обычным электротехническим фарфором, является независимость е,- от частоты и низкое значение tg О не только при комнатной, но и гри повышенной температуре. В известной мере это достигается уменьшением содержания менее чистой пластичной глинй, введением окиси бария и повышением содержания глинозема. Ионы бария в известной мер нейтрализуют повышение электрической проводимости за счет легкоподвижных ионов калия, содержащихся в полевошпатовом стекле и способствуют снижению tg б. За счет повышенного содержания глинозема масса имеет пониженную формуемость и более узкий интервал спекания. Дальнейшее развитие высокочастотной керамики пошло по пути создания масс с использованием различных окислов металлов, иногда специально синтезируемых. Таким путем удалось получить материалы с весьма высокими значениями z,. (для конденсаторов) и разными значениями ТК е , в том числе положительного знака.  [c.238]


В последнее время, кроме метатитаната бария, применяется и ряд других материалов этого же типа. Диэлектрические потери керамических материалов третьей подгруппы велики и их уже нельзя рассматривать как высокочастотные материалы. При частоте 50 гц и низком напряжении tgo 0,02 0,03, но может заметно возрастать с повышением напряжения.  [c.239]

Ответ. 1. Ферриты как оксидные ферромагнетики отличаются от металлических ферромагнетиков. Самое существенное отличительное свойство ферритов заключается в их высоком удельном сопротивлении, которое находится в диапазоне 10 —10 Ом-м (см. рис. 2-1-1). Для металлических ферромагнетиков такие большие значения электрического сопротивления недостижимы. Это определяет применение ферритов в качестве высокочастотных материалов. Указанные материалы при.меняются в области частот свыше 1 МГц и в частности от 100 до 10 000 МГц, где использование металлических ферромагнетиков совсршеИ Но недопустимо.  [c.214]

При диффузионной сварке соединение образуется в ре зультате взаимной диффузии атомов в поверхностных слоях контак тирующих материалов, находящихся в твердом состоянии. Температура нагрева при сварке несколько выше или ниже температурь рекристаллизации более легкоплавкового материала. Диффузионную сварку в большинстве случаев выполняют в вакууме, однако она возможна в атмосфере инертных защитных газов. Свариваемые за готовки 3 (рис. 5.45) устанавливают внутри охлаждаемой металлической камеры 2, в которой создается вакуум 133(l(H-f-10" ) Па, и нагревают с помощью вольфрамового или молибденового нагревателя или индуктора ТВЧ 4 (5 — к вакуум1юму насосу 6 — к высокочастотному генератору).Может быть исиользоваитакже и электронный луч, позволяющий нагревать заготовки с eui,e более высокими скоростями, чем при использовании ТЕ Ч. Электронный луч применяют для нагрева тугоплавких металлов и сплавов. После тогй как достигнута требуемая температура, к заготовкам прикладывают с помощью механического /, гидравлического или пневматического устройства небольшое сжимающее давление (1—20 МПа) в течение 5—20 мин. Такая длительная выдержка увеличивает площадь контакта между предварительно очищенными свариваемыми поверхностями заготовок. Время нагрева определяется родом свариваемого металла, размерами и конфигурациями заготовок.  [c.226]

Однако вибрации при обработке можно использовать так, чтобы они положительно влияли на процесс резания и качество обработанных поверхностей, в частности применять вибрационное резание особенно труднообрабатываемых материалов. Сущность вибрационного резания состоит в том, что в процессе обработки создаются искусственные колебания инструмента с регулируемой частото и заданной амплитудой в определенном направлении. Источниками искусственных колебаний служат механические вибраторы или высокочастотные генераторы. Частота колебаний 200—20 ООО Ги, амплитуда колебаний 0,02—0,002 мм. Выбор оптимальных амплитуд и частоты колебаний зависит от технологического метода обработки и режима резания. Колебания задают по направлению подачи или скорости резания.  [c.274]

Магнитодиэлектриками называют высокочастотные магнитные материалы — спрессованную смесь порошков ферромагнитных материалов и диэлектриков. В качестве ферромагнитного материала (основы) применяют карбинольное Ре, альсифер или сплав 79НМ. Диэлектриками являются полистирол, бакелитовая смола или нитролаки (связующее).  [c.280]

Поведение металлических материалов в условиях, когда низкочастотная составляющая нагружения, как правило, является расчетной и носит статический или повторно-статический характер, а дополнительные высокочастотные нагрузки и вибрация имеют несущественную но сравнению с расчетной нагрузкой амплитуду, изучено достаточно широко, особенно влияние поли-частотного (в частности, двухчастотного) на1ружения на усталостные характеристики. Показано, что и на стадии зарождения, и на стадии развития усталостных трещин наложение высокочастотной составляющей значительно со-крагцает циклическую долговечность материала. Причем результат воздействия такого нагружения превышает результат простого сложения амплитуд низкочастотной и высокочастотной нагрузок.  [c.98]

В высокочастотном импедансном методе (ультразвуковой диапазон) преобразователь излучает продольную волну. Условия ее возбуждения зависят от акустического импедан -са участка поверхности объекта контроля. Акустический импеданс, в свою очередь, зависит от наличия или OT yi -ствия расслоения (метод обычно применяют для контроля СЛОИСТЫХ материалов).  [c.174]


Распространенным методом получения пленок гидрогенизированного аморфного кремния является высокочастотное ионно-плазменное распыление кремния в атмосфере арюнно-водородной плазмы, которое также широко используется в производстве полупроводниковых приборов и микросхем для нанесения пленок других материалов.  [c.16]

Параллельно с развитием индукционного нагрева металлов велись разработки в области высокочастотного нагрева диэлектриков. Первые опыты по сушке древесины в электромагнитном поле высокой частоты провел в 1930—1934 гг. Н. С. Селюгнн (ЦНИИ механической обработки древесины) и одновременно А. И. Иоффе. Опыт советских исследователей был широко использован за рубежом. В иностранной литературе указывается на приоритет СССР. В дальнейшем этот метод получил широкое промышленное применение для нагрева пластмасс и других материалов с целью прессования, сварки, склеивания и т. д. Диапазон используемых частот 10 —10 Гц. Развитие этого метода многим обязано работам проф. А. В. Нетушила, инж. Н. Л. Брицына, кандидатов техн. наук И. Г. Федоровой и Т. А. Шелиной и др.  [c.6]

При высокочастотном нагреве часто приходится иметь дело с неоднородными веществами, состоящими из нескольких компонентов с различными диэлектрическими свойствами. Для характеристики таких гетерогенных материалов удобно пользоваться усредненными параметрами, которые должны учитывать реальную структуру материала и свойства его отдельных компонентов. Формулы, дающие связь между средним значением комплексной диэлектри-  [c.153]

Универсальные высокочастотные индукционные генераторы (ВЧИ) имеют мощность от 10 до 63 кВт при 0,44 МГц и 100, 160 кВт при 0,066 МГц. Выпускаются установки малой мощности для литья микропровода (3 кВт), производства полупроводниковых материалов и для других процессов. Наиболее мощные генераторы (до 1000 кВт) производятся для сварки п получения высокочастотной плазмы.  [c.170]

Наибольшей механической прочностью обладают материалы из полимеров резольного типа с длинноволокнистым наполнителем. Наиболее высокими электрическими параметрами — материалы высокочастотного назначения из ани-линфенолформальдегидного полимера с наполнителями кварц и слюда, tg б при 50 Гц обычно определяют для материалов, предназначенных для электроизоляционных низкочастотных деталей, tg б и е, при 10 Гц —для деталей высокочастотного назначения. Наибольшее значение теплостойкости по Мартенсу имеет материал на основе резольного полимера с асбестовым волокнистым наполнителем. Модификация фенолформальдегидных полимеров полиамидами, поливинилхлоридами и синтетическим каучуком улуч- нает некоторые параметры, например удельную ударную вязкость, влагостойкость. Материалы на основе анилинфе-ыолформальдегидного полимера в эксплуатации не выделяют аммиака,< что иногда имеет место с материалами на чисто фенольных смолах. Повышенную механическую прочность имеет материал на основе модифицированного фенол-формальдегидного связующего с наполнителем из длинных стеклянных волокон. Эта масса марки АГ-4 широко используется для изготовления сравнительно крупных коллекторов без миканитовых манжет.  [c.200]

Высокочастотные керамические материалы, используемые преимущественно в радиотехнике, p lздeляют по основному назначению на три типа А — высокочастотные для конденсаторов, Б — низкочастотные для конденсаторов, В — высокочастотные для установочных изделий и других радиотехнических деталей.  [c.238]

В ряде случаев требуется такой магнитный материал, у которого магнитная проницаемость не зависит от напряженности магнитного поля. В частности, этот материал применяют в некоторых дросселях, трансформаторах тока с постоянной погрешностью, в аппаратуре дальней телефонной связи, высокочастотной многоканальной электросвязи, некоторых измерительных приборах и пр. К таким материалам относится перминвар — тройной сплав железа, никеля и кобальта. Магнитная проницаемость перминвара при специальной термообработке остается практически постоянной до значения напряженности магнитного поля 80—160 А/м. Применение перминвара ограничивается технологическими трудностями и высокой стоимостью. К числу сплавов, отличающихся известным постоянством магнитной проницаемости в слабых магнитных полях, относится сплав изоперм, состоящий из железа, никеля и меди с добавкой алюминия. Применяется он в производстве высококачественной телефонной аппаратуры, например для изготовления сердечников некоторых катушек.  [c.300]

Бариевые магниты обладают высокой стабильностью при воздействии магнитных полей, вибрации и ударного воздействия, их можно использовать в магнитных цепях, работающих в высокочастотных полях, так как сопротивление бариевых магнитов велико (до 10 —10 Ом-м). Бариевые магниты не содержат дефицитных материалов и примерно в 10 раз дешевле магнитов из ЮНДК.  [c.109]

Для изготовления высокочастотных высоковольтных изоляторов применяют стеатитовую керамику, так как фарфор имеет сильную. зависимость электрических характеристик от температуры из-за наличия большого количества полевошпатового стекла с повы-1иенной электропроводностью. Стеатитовая керамика изготовляется на основе-тальковых минералов, основной кристаллической фазой которых является метасиликат магния MgO-SiOj. Стеатитовые материалы характеризуются высокими значениями р, в том числе при высокой температуре, малым tg б, за исключением материала группы 210 ГОСТ 20419—83, предназначенного для производства крупных высоковольтных изоляторов. Стеатитовая керамика характеризуется высокими механическими свойствами, стабильно-  [c.240]


Смотреть страницы где упоминается термин Высокочастотные материалы : [c.179]    [c.347]    [c.378]    [c.27]    [c.97]    [c.177]    [c.299]    [c.240]    [c.304]    [c.241]    [c.318]   
Конструкционные материалы Энциклопедия (1965) -- [ c.280 ]



ПОИСК



Высокочастотные базисные материалы для производства печатных плат

Высокочастотные конденсаторные материалы

Высокочастотные магнитомягкие материалы

Керамические радиотехнические материал высокочастотные

Нагрев высокочастотный несгораемые материалы

Нагрев высокочастотный неснижаемые запасы сырья и материалов

Радиотехнические материалы Э 12. Радиоизоляционные и высокочастотные материалы

Радиотехнические материалы Э 12. Радиомэоляционные я высокочастотные материалы

Установка для высокочастотной сварки термопластичных материалов тип ВЧС

Фольгированные высокочастотные материалы



© 2025 Mash-xxl.info Реклама на сайте