Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Серебро Физико-механические свойства

Проведение спекания в условиях, когда входящий в композицию легкоплавкий компонент образует при спекании жидкую фазу, активизирует усадку и обеспечивает получение заготовок с малой или даже нулевой пористостью, с высокими физико-механическими свойствами. С этой же целью, например, применяют пропитку тугоплавких материалов серебром или медью при производстве электро-контактных деталей.  [c.424]

Состав электролита приведен в табл. 6 (4), электролит прост в приготовлении, не требует кипячения и фильтрации и практически не имеет потерь серебра. Покрытия, получаемые из этого электролита, мелкокристаллические, светлые, с желтоватым оттенком, что практически не влияет на его физико-механические свойства. Выход по току в йодистом электролите равен 100 %, повышение концентрации серебра в растворе позволяет поднять допустимую плотность  [c.13]


Физико-химические свойства 3 — 306 Серебро литое — Физико-механические свойства  [c.260]

Значительная доля износа и выхода из строя деталей с по-крытиями связана с их коррозионно-механическим разрушением. Поэтому новые гальванопокрытия должны обладать наряду с повышенными физико-механическими свойствами и значительной коррозионной стойкостью. Такому требованию отвечают разрабатываемые нами покрытия сплавами медь-олово-свинец-никель,, серебро-палладий и никель-фосфор.  [c.102]

Физико-механические свойства серебра можно улучшить, применяя вместо чистого серебра его сплавы. Например, в качестве контактного материала нашел применение сплав серебра с кадмием весьма перспективным для этих же целей являются также сплавы серебра с сурьмой, никелем, палладием и некоторыми другими металлами.  [c.270]

Физико-механические свойства сплавов серебро — палладий  [c.282]

В связи с этим при проектировании и расчете конструкций с использованием свинца рекомендуется принимать 8—10-ти кратный запас прочности (по прочности при растяжении). Физико-механические свойства и структура свинца улучшаются при введении небольших добавок меди и серебра [203]. Повышение прочности свинца достигается также введением добавок 0,51— 0,55% натрия и 0,61—0,65% кальция [205].  [c.183]

Золото — коррозионностойкий металл, не разрушается кислотами и щелочами и не окисляется даже при высокой температуре, в противоположность серебру, не реагирует с сероводородом и другими серосодержащими соединениями, обладает хорошей тепло-и электропроводностью, не изменяется со временем даже в агрессивной атмосфере. Полированная поверхность золота имеет высокий коэффициент отражения света. Недостатками чистого золота являются малая твердость и износоустойчивость. Для улучшения физико-механических свойств золотые покрытия легируют другими металлами.  [c.339]

Широкое применение гальванопластики в новой технике связано с получением заданных физико-механических свойств осажденных металлов, в том числе для работы в условиях высоких и низких температур. С этой целью разработаны новые электролиты и режимы для осаждения традиционных в гальванопластике металлов (меди, никеля, кобальта, железа, золота и серебра), сплавов кобальта и никеля, жаростойких металлов и их сплавов. Кроме того, созданы способы получения композиционных материалов путем осаждения металлов с порошками и нитями тугоплавких соединений, а также электролиты и режимы для осаждения алюминия, цинка, олова и тугоплавких металлов, ранее не применявшихся в гальванопластике.  [c.575]


Медь и медные сплавы широко применяют в качестве конструкционного материала для изготовления изделий различного назначения сосудов, трубопроводов, электрораспределительных устройств, электрооборудования, химической аппаратуры и т. д. Многообразие в использовании меди и медных сплавов связано с их особыми физико-механическими свойствами. Медь обладает наиболее высокой (после серебра) электропроводностью и теплопроводностью, полной устойчивостью в отношении атмосферной коррозии,,сохраняет высокие пластические свойства в условиях высокого холода.  [c.200]

Многочисленные цветные металлы в свою очередь подразделяются в зависимости от физико-механических свойств на ряд групп тяжелые (медь, никель, свинец, цинк, олово) легкие (алюминий, магний, кальций, бериллий, титан, литий, барий, стронций, натрий, калий, рубидий, цезий) благородные (золото, серебро, платина, осмий, рутений, родий, палладий) редкие металлы. Последние в свою очередь условно делят на тугоплавкие (вольфрам, молибден, ванадий, тантал, ниобий, цирконий) редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.) рассеянные (германий, рений, селен и др.) и радиоактивные (уран, торий, радий, протактиний).  [c.20]

Цветные металлы—медь, олово, цинк, свинец, алюминий, серебро, золото, платина, хром и т. д.—в чистом виде не нашли в машиностроении большого применения. Они применяются в основном в виде сплавов (латунь—медноцинковый сплав, бронза—безоловянная и оловянная, алюминиевые сплавы и т. д.), которые обладают лучшими физико-механическими свойствами, чем каждый из этих металлов в отдельности. Цветные металлы (за исключением сплавов) используют для покрытия металлических поверхностей в целях защиты материала от коррозии (лужение, цинкование и т. д.), повышения поверхностной твердости, износостойкости и антикоррозионных свойств стальных деталей (хромирование и т. д.), или повышения их жаростойкости (алитирование, т. е. насыщение поверхностного слоя стали алюминием) и т. д.  [c.13]

Цветные металлы в свою очередь подразделяют в зависимости от физико-механических свойств на ряд групп тяжелые (медь, никель, свинец, цинк, олово) легкие (алюминий, магний, кальций, бериллий, титан, литий, барий, стронций, натрий, калий, рубидий, цезий) благородные (золото, серебро, платина, осмий, рутений, родий, палладий) редкие металлы. Послед-  [c.5]

Цветные металлы, в свою очередь, подразделяют в зависимости от их физико-механических свойств на ряд групп тяжелые (никель, медь, цинк, олово, свинец), легкие (литий, бериллий, натрий, магний, алюминий, калий, кальций, титан, рубидий, стронций, цезий, барий) благородные (рутений, родий, палладий, серебро, осмий, платина, золото) и редкие, которые, в свою очередь, условно делят на тугоплавкие (ванадий, цирконий, ниобий, молибден, тантал, вольфрам), редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.), рассеянные (германий, селен, рений и др.) и радиоактивные (радий, торий, протактиний, уран).  [c.5]

По сравнению с другими методами нанесения покрытий металлами (горячим, термодиффузионным, распыления и др.) электроосаждение имеет ряд преимуществ и позволяет регулировать толщину слоя, экономно расходовать цветные металлы, получать покрытия с необходимыми физико-химическими и механическими свойствами. Этот метод незаменим при покрытии металлами с высокой температурой плавления, такими, как хром, никель, медь, серебро, платина, железо.  [c.111]

Условия работы электрических контактов очень разнообразны, поэтому к ним предъявляются самые различные требования. Контакты, подвергающиеся истиранию должны обладать не только высокой износостойкостью и иметь низкое переходное сопротивление, но должны быть стойкими к атмосферной коррозии и к воздействию различных промышленных газов. Основными недостатками серебра, как контактного материала, является низкая износостойкость и способность образовывать на поверхности сульфидную пленку, плохо проводящую ток. Кроме того, уже при малой нагрузке серебро сваривается , что приводит к переносу металла с одного участка поверхности на другой, образованию наплывов и, как следствие, к нарушению контакта. Можно улучшить механические и физико-химические свойства серебра легированием его другими металлами. Наибольший интерес для контактов, работающих на истирание, представляют сплавы серебра с кадмием и сурьмой.  [c.59]


По своим физико-химическим свойствам многие цветные металлы резко отличаются от стали, что необходимо учитывать при выборе способа и технологии сварки. Наибольшее значение для оценки свариваемости того или иного металла имеют следующие свойства сродство к газам воздуха, температуры плавления и кипения, теплопроводность, плотность, механические характеристики при высоких и низких температурах. По совокупности этих свойств рассматриваемые металлы можно условно разделить на такие группы легкие (алюминий, магний, бериллий) активные и тугоплавкие (титан, цирконий, ванадий, вольфрам, молибден, ниобий) тяжелые цветные и драгоценные (медь, серебро, платина и др.).  [c.635]

Огромное разнообразие в использовании чистой меди связано с ее особыми физико-механически.ми свойствами. Медь обладает наивысшей после серебра электропроводностью и теплопроводностью. Ее полная устойчивость в отношении атмосферной коррозии обеспечивает практически неограниченную сохранность изготовленных из нее предметов. Важнейшие для практики физические и механические свойства красной меди чистотой 99,9% указаны в табл. 1.  [c.352]

Адгезия смазочного материала к металлу и энергия их взаимодействия играют важную роль в формировании смазочного слоя на контактных поверхностях. Механические свойства поверхностного слоя зависят от совокупности физико-химических и реологических свойств применяемых смазок, свойств самого материала (металла) и состояния его поверхности, а также от условий трения (температуры, давления, скорости перемещения и т. п.). Так, на инертных металлах (серебре, никеле и т.д.) и на стекле смазочное действие таких поверхностно-активных компонентов смазок, как жирные кислоты, ниже, чем неполярных парафиновых углеводородов. На активных металлических поверхностях (железо, медь, цинк и т. д.) жирные кислоты снижают трение, естественно, в значительно большей степени, чем парафиновые углеводороды. Для каждого сочетания металл — смазочный материал существует своя температура, выше которой коэффициент трения резко возрастает и происходит задир поверхностей. При этой температуре происходит разрушение (десорбция) ориентированной структуры в граничном слое смазочного материала. Поэтому высокие температуры, развивающиеся при трении, могут привести к такому нежелательному явлению, как схватывание с последующим вырывом материала.  [c.122]

Существует большое разнообразие конструкционных клеев, отличающихся физико-механическими свойствами и технологией их применения. Наибольшее применение в машиностроении и приборостроении имеют органические клеи на основе синтетических полимеров, например универсальные клеи БФ, технические условия на которые стандартизованы, и эпоксидные клеи с наполнителем и без наполнителя. При необходимости повышенной теплостойкости (до 1000 С) применяют элемеи-тоорганические клеи, обладающие сравнительно меньшей эластичностью. Клеи не являются проводниками, поэтому при необходимости обеспечить электропроводность в них добавляют порошкообразное серебро.  [c.26]

Серебряны<е припои отличаются хорошим сочетанием физико-механических свойств — относительно невысокими температурами плавления, повышенными элбктро- и теплопроводностью, высокими прочностью и пластичностью. Они хорошо смачивают металлические поверхности и заполняют зазоры, обеспечивая прочность, коррозион-HJTO стойкость паяных соединений, пригодность для эксплуатации в условиях ударных и вибрационных нагрузок. Эти припой широко используют для пайки черных и цветных металлов и их сплавов за исключением алюминия и магния.  [c.401]

Фиг. 19. Физико-механические ГОДНОСТЬ И те-свойства медновольфрамовых П Л О П р О В ОД Н ОСТЬ, сплавов / — предел прочности явЛЯется серебро при сжатии в кг мм -. (Ю-400/п) ИЛИ медЬ Фиг. 19. <a href="/info/430754">Физико-механические</a> ГОДНОСТЬ И те-свойства медновольфрамовых П Л О П р О В ОД Н ОСТЬ, сплавов / — <a href="/info/1682">предел прочности</a> явЛЯется серебро при сжатии в кг мм -. (Ю-400/п) ИЛИ медЬ
Клеи и герметики могут быть в виде жидкостей, паст, замазок, пленок. В состав этих материалов входят следующие компоненты пленкообразующее вещество (в основном термореактивные смолы, каучуки), которое определяет адгезионные, когезионные свойства и основные физико-механические характеристики растворители (спирты, бензин и др.), создающие определенную вязкость пластификаторы для устранения усадочных явлений в пленке и повышения ее эластичности отвердители и катализаторы для перевода пленкообразующего вещества в термостабильное состояние наполнители в виде минеральных порошков, повышающих прочность соединения, уменьшающих усадку пленки. Для повышения термостойкости вводят порошки А1, А120а, ЗЮ , для повышения токо-проводимости — серебро, медь, никель, графит.  [c.495]

По методическим соображениям были выбраны два следующих прозрачных материала полиметилметакрилат — аморфный материал с отсутствием ярко выраженного предела текучести, обладающий упруго-вязкими свойсгвами и весьма малой твердостью он в большой мере может служить аналогом фрикционных неметаллических материалов хлористое серебро Ag l — прозрачный металл А. В. Степанова. Хлористое серебро по некоторым своим свойствам является аналогом меди. Физико-механические характеристики указанных материалов приведены в табл. 13.  [c.189]

Книга содержит оригинальные исследования, приведшие к установлению фундаментальных представлений в физике пластичности и прочности кристаллов. Они лежат в основе современного учения о механических свойствах кристаллических тел. В книге выдвинуты и доказаны взгляды о том, что причиной разрушения кристаллов являются дефекты, создаваемые предшествующей этому процессу пластической дефорхмацией. Открыты и изучены явления, определяющие возникновение и образование линий скольжения в кристаллах, обнаружен и исследован новый механизм пластического формоизменения кристаллов. Предложен метод изучения механизмапластичнос- ти путем исследования областей локальных нарушений кристалла вблизи уколов, царапин, вершин трещин и т. п. Обнаружены прозрачные металлы — галоидные соединения серебра п таллия и сплавы на их основе, обладающие металлоподобными механическими свойствами, и установлена связь механических свойств кристаллов со свойствами атомов,их образующих.  [c.2]


Эти вещества были взяты на основании следующих соображений. Из сказанного выше (здесь сопоставлены ионные константы и константы решетки кристаллов) видно, что эти вещества должны обладать подобными механическими и физико-хилшческими свойствами все величины, влияние которых на пластичность мыслимо (как например, вид междучастичных сил или тин решетки), у хлористого серебра и у хлористого натрия или одинаковы, или отличаются друг от друга очень мало. Однако, как указывал Фаянс 1108], поляризационные эффекты у Ag l много больше, чем у ] аС1. Основание этому лежит в различии поляризационных  [c.79]


Смотреть страницы где упоминается термин Серебро Физико-механические свойства : [c.252]    [c.394]    [c.421]    [c.20]    [c.139]    [c.418]    [c.212]    [c.14]   
Материалы в приборостроении и автоматике (1982) -- [ c.281 , c.282 , c.297 ]



ПОИСК



59-1-Механические Физико-механические свойства

Серебро

Серебро Свойства

Физико-механические свойств

Физико-механические свойства свойства



© 2025 Mash-xxl.info Реклама на сайте