Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость деформации элемента жидкости при течении

СКОРОСТЬ ДЕФОРМАЦИИ ЭЛЕМЕНТА ЖИДКОСТИ ПРИ ТЕЧЕНИИ 59  [c.59]

Скорость деформации элемента жидкости при течении  [c.59]

Поскольку иногда детали машин и элементы конструкций работают за пределом текучести, необходимо исследовать зависимость между напряжениями и деформациями в пластической области, где соотношения линейной теории упругости уже неприменимы. Соотношения между деформациями и напряжениями в пластической области в общем случае нельзя считать не зависящими от времени. В любой точной теории пластического деформирования следовало бы учитывать влияние всего процесса изменения пластической деформации с момента начала пластического течения. Соотношения, учитывающие это, были бы очень сложными, они содержали бы в себе напряжения и скорость изменения деформации во времени. Уравнения были бы аналогичны уравнениям течения вязкой жидкости, а деформацию в каждый момент времени следовало бы определять, осуществляя пошаговое интегрирование по всему процессу изменения деформации. Такой подход привел бы к очень трудоемким расчетам даже при решении простейших задач о пластической деформации. Вследствие этого обычно делают некоторые упрощающие предположения, которые позволяют относительно просто исследовать процессы пластического деформирования и получать достаточно простые результаты, пока температура ниже температуры ползучести и в случае обычных скоростей деформации.  [c.118]


В предыдущих главах мы пользовались эйлеровым методом описания движений жидкости. При использовании этого метода течение несжимаемой жидкости в момент I характеризуется полем скорости и(Х, 1)у т. е. значениями вектора скорости во всевозможных точках = Хи Х2, Хг) пространства (в настоящем разделе по причинам, которые будут ясны из дальнейшего, нам будет удобно обозначать координаты А /, а не л /, как в предыдущих главах). Уравнения гидродинамики (из которых давление можно исключить с помощью уравнения (1.9)) при этом в принципе позволяют определить значения переменных Эйлера и(Х, t) в любой момент времени > /о по заданным начальным значениям и(Х, о) = ио(Х). Однако для изучения таких явлений, как турбулентная диффузия (т. е. распространение примесей в поле турбулентности) или деформация материальных поверхностей и линий (состоящих из фиксированных элементов жидкости) в тур-булентном течении, более удобным оказывается лагранжев метод описания движений жидкости. Он заключается в том, что вместо скоростей жидкости в фиксированных точках X пространства за основу берется движение фиксированных жидких частиц , прослеживаемое, начиная от некоторого начального момента времени / = to. Под жидкими частицами при этом понимаются объемы жидкости, размеры которых очень велики по сравнению со средним расстоянием между молекулами (так что для соответствующих объемов имеет смысл говорить об их скорости, оставаясь в рамках механики сплошной среды), но все же настолько малы, что скорость и давление внутри частицы можно считать практически постоянными и в течение рассматриваемых промежутков времени эти частицы можно считать перемещающимися как одно целое (т. е. без заметной деформации). Лагранжев метод самым непосредственным образом связан с реальными движениями отдельных элементов жидкости, совокупность которых и составляет течение поэтому его можно считать физически более естественным, чем эйлеров метод описания. В то же время в аналитическом отношении использование переменных Лагранжа, относящихся к индивидуальным частицам жидкости, оказывается гораздо более громоздким, чем использование переменных Эйлера и(Х, t), вслед-  [c.483]

Термодинамический анализ пластической деформации с привлечением дислокаций берет начало из теории вязкого течения молекулярных жидкостей, предложенной Эйрингом [117]. Скорость течения рассматривается как результат, успешного действия единиц потока , когда носитель деформации движется путем преодоления энергетического барьера при помощи приложенного напряжения и теплового возбуждения. Математический аппарат здесь точно такой же, как и при описании химических реакций, т. е. теория абсолютных скоростей реакций. Будем считать элемент дислокации единицей потока и примем, что частоту, с которой элемент дислокации преодолевает энергетический барьер (в том смысле, что приложенное напряжение о совершает работу), можно записать так же, как скорость термически активируемой химической реакции  [c.100]


Если не учитывать влияния термического разупрочнения на предел текучести а, которое для реальных материалов, по-видимому, становится существенным при приближении рабочих температур к температуре рекристаллизации, то в (3.19)= О и в представленном виде описание неупругого деформирования материала по своим возможностям близко к одному из вариантов теории пластичности и ползучести с анизотропным упрочнением, разработанной Н. Н. Малининым и Г. М. Хажинским [27]. В частном случае = О, что соответствует затвердеванию жидкости в элементе 3 вязкого трения в аналоге (см. рис. 3.5, а), неупругие деформации возможны лишь при выполнении условий (3.29) и (3.31), а их скорости при постоянных действующих напряжениях определяются только скоростями снятия изотропного и анизотропного упрочнения. Если к тому же f = О и /" = О, т. е. отсутствует термическое разупрочнение, то описание неупругого поведения материала отвечает варианту теории пластического течения, разработанной Ю. И. Кадашевичем и В. В. Новожиловым [27].  [c.139]

Видимо, поэтому в основных курсах гидродинамики предпочтение отдается феноменологическому выводу уравнений Навье — Стокса. Последний имеет простую логическую структуру и опирается главным образом на две аксиомы о короткодействии внутренних сил, которые, следовательно, сводятся к силам поверхностным, и о тензорном законе вязкого трения, обобщающем закон Ньютона. При этом лине11пая связь между касательными напряжениями и скоростями деформаций может рассматриваться как имеющая источник в термодинамике необратимых процессов. В такой постановке, по сути дела, отсутствует модельный элемент, за исключением того, что жидкость есть подвижная сплошная среда, в которой касательные напряжения возникают лишь при наличии скоростей деформаций, т. е. течения.  [c.6]

МЕХАНИКА [от греч. шёсЬап1кё (1ёсЬ-пё) — наука о машинах, искусство построения машин], наука о механич. движении матер, тел и происходящих при этом вз-ствиях между ними. Под механич. движением понимают изменение с течением времени взаимного положения тел или их ч-ц в пр-ве. В природе — это движение небесных тел, колебания земной коры, воздушные и морские течения и т. п., а в технике — движения разл. летат. аппаратов и транспортных средств, частей двигателей, машин и механизмов, деформации элементов разл. конструкций и сооружений, движения жидкостей и газов и мн. др. Рассматриваемые в М. вз-ствия представляют собой те действия тел друг на друга, результатами к-рых явл. изменения скоростей точек этих тел или их деформации, напр, притяжения тел по закону всемирного тяготения, взаимные давления соприкасающихся тел, воздействия ч-ц жидкости илп газа друг на друга и на движущиеся в них тела.  [c.414]

Динамические явления в механизмах захвата и качания хобота необходимо учитывать при пластической деформации металла в бойках кузнечного агрегата. Рассматривая динамику нагружения манипулятора во время пластической деформации, систему пресс—заготовка по отношению к манипулятору следует считать внешней. Факторами, определяющими характер динамического взаимодействия двух систем, будут величина и скорость перемещения отдельных точек заготовки. Разжатие клещей вызывает повышение нагрузок на элементы механизма захвата. При этом наряду с упругими деформациями происходят либо сжатие рабочего газа в цилиндре механизма захвата, если последний оборудован пневмоприводом, либо истечение жидкости из цилиндра в напорный трубопровод, если механизм захвата оборудован гидравлическим или гидроаккумуляторным приводом. Время, в течение которого динамические нагрузки на манипулятор определяются как результат формообразования, сопровождающегося разжатием клещей, называется периодом пластической деформации [351.  [c.74]

Уравнение размыва русла. Размыв русла происходит тогда, когда количество наносов, поступающих на данный участок, меньще их количества, выносимого потоком в нижележащие участки. При возрастании скорости потока по его длине русло будет размываться, при уменьшении скорости потока по его длине возможны намыв или заиление русла. Уравнение размыва или деформации русла можно получить путем составления баланса наносов на рассматриваемом участке реки, в. этом смысле оно должно быть вполне аналогичным дифференциальному уравнению неразрывности потока при неустановившемся движении жидкости. Для составления уравнения деформации русла рассмотрим некоторый участок его длиной б5, шириной Ь и глубиной к. Допустим, что расход потока постоянен и равен Q, а режим движения медленно изменяющийся. Такое движение можно рассматривать как одноразмерное, считая гидравлические элементы потока зависящими только от координаты пути 5 и от времени Полученное уравнение может быть применено для любой линии тока или элементарной струйки, потока. Последнее важно, так как при анализе деформации русла на коротком участке приходится исходить из построения плана течения по методу Н. М. Вернадского, основанному на делении потока на ряд элементарных струек. В общем случае по длине потока и, следовательно, по длине струйки могут изменяться все элементы потока (глубина к, ширина Ь и скорость и), кроме расхода Q, являющегося постоянной величиной.  [c.240]



Смотреть страницы где упоминается термин Скорость деформации элемента жидкости при течении : [c.126]    [c.45]    [c.461]   
Смотреть главы в:

Теория пограничного слоя  -> Скорость деформации элемента жидкости при течении



ПОИСК



Деформации скорость

Деформация элемента жидкост

Скорость деформации деформации течения

Скорость течения

Течение в жидкости

Течение. Скорости деформации



© 2025 Mash-xxl.info Реклама на сайте