Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Простые примеры на закон сохранения энергии

Закон сохранения энергии включает в себя понятия кинетической и потенциальной энергии, а также понятие работы. Эти понятия, которые можно усвоить на простом примере, в дальнейшем мы обсудим более подробно. Сначала мы рассмотрим силы и движение только в одном измерении. Это существенно упростит дело. Некоторые вопросы в этой главе будут обсуждаться дважды, но такое повторение окажется только полезным.  [c.149]


Рассмотрим несколько простейших примеров применения закона сохранения энергии к расчету механических движений.  [c.248]

Рассмотрим пример, в котором применение закона сохранения энергии дает простой способ решения задачи  [c.217]

Простые примеры на закон сохранения энергии, движении планеты вокруг Солнца потенциальная  [c.284]

Мы рассмотрели основные законы движения заряженных частиц в электрическом и магнитном полях. Сначала мы определили лагранжиан частиц (уравнение (2.15)). Закон сохранения энергии позволил представить скорость частицы в виде функции потенциала (уравнение (2.31)). Затем были получены релятивистские уравнения движения (2.50) — (2.52) в обобщенной ортогональной криволинейной системе координат. Были рассмотрены частные случаи уравнений движения в декартовой (уравнения (2.53) — (2.55) и цилиндрической (2.60)—(2.62) системах координат. Уравнения движения были затем преобразованы в траекторные уравнения (2.76) —(2.77), (2.80), (2.81) и (2.84) — (2.85) соответственно. Мы ввели релятивистский потенциал (уравнение (2.89)) и показали, что он позволяет использовать нерелятивистские уравнения в магнитных полях даже в случае высоких энергий частиц. Затем был введен электронно-оптический показатель преломления (соотношение (2.92)) и установлены аналогии между геометрической оптикой, с одной стороны, и электронной и ионной оптикой, — с другой. Были определены траектории частиц в однородных электростатическом и магнитном полях посредством точного решения траекторных уравнений. В качестве практических примеров рассмотрены плоские конденсаторы, длинные магнитные линзы, электростатические и магнитные отклоняющие системы, простые анализаторы масс и скоростей. Наконец, были приведены законы подобия электронной и ионной оптики (соотношения (2.183) — (2.188) и (2.190)).  [c.63]

В дополнение можно отметить, что для диссипативной системы неприменимы термодинамические понятия, такие, как внутренняя или свободная энергия. В этой связи с самого начала можно было ожидать невозможности придать простой энергетический смысл отдельным членам в феноменологическом законе сохранения энергии. В силу сказанного становится понятным, почему в п. 1.2 принцип возрастания энтропии при исследовании тензора еу(м, к) удавалось учесть только при вещественных и А . Сделать то же самое и вообще детальнее исследовать энергетические соотношения для диссипативной системы (или для непоглощающей среды, но при комплексном к) можно только в результате более полного анализа свойств системы, требующего знания не только проницаемости Е/у( ), к). Результат такого анализа был в качестве примера приведен выще для простейшей модели плазмы (подробнее см. [41]),  [c.102]


Как известно, они отличны от нуля, если числа частиц в состояниях пип отличаются друг от друга на единицу. Отсюда следует, что дельтаобразные особенности спектральной функции в данном случае определяют изменение энергии ферми-системы при изменении числа частиц в ней на единицу. При этом предполагается, что частица добавляется в состояние X (или изымается из него). Подчеркнем, что состояния X были введены нами в 1 просто как некая базисная система, с помощью которой был произведен переход к представлению вторичного квантования. Они, вообще говоря, отнюдь не обязаны быть стационарными соответственно, спектральная функция может и не иметь особенностей указанного вида. В отсутствие взаимодействия между частицами, однако, всегда можно выбрать в качестве базисной системы собственные функции гамильтониана при этом 7(Х, Е) имеет только дельтаобразные особенности в точках Е, представляющих собой просто значения энергии отдельных частиц. При наличии взаимодействия состояния а(Х)Ф , строго говоря, всегда не стационарны. Соответственно особенности спектральной функции 7(Х, Е) не имеют чисто дельтаобразного характера, и состояние с а(Х)Ф затухает при t- o (ср. 2). При достаточно малом затухании, однако, можно в соответствии с 2 ввести представление о квазистационарных одночастичных состояниях, характеризующихся некоторой энергией и затуханием. Действительно, вычисляя вероятности переходов в системе под влиянием гармонической внешней силы, легко убедиться, что именно частота, определяющая осцилляции амплитуды состояния при >оо, входит в закон сохранения энергии (см. пример в гл. VI). При этом, как всегда в таких случаях, энергия одночастичного состояния сохраняется лишь с точностью до неопределенности, связанной с затуханием. Подчеркнем, что фактически энергии одночастичных . состояний следует относить уже не к отдельным частицам, а ко всей системе в целом. На языке квантовой теории поля  [c.38]

Принцип сохранения энергии можно вывести из принципа наименьшего действия следовательно, он в нем содержится между тем сделать обратное не удается. Поэтому принцип сохранения энергии является более частным, а принцип наименьшего действия — более общим законом. Поясним это на простом примере движения свободной материальной точки, не подверженной никаким силам. В соответствии с принципом сохранения энергии, такая точка движется с постоянной скоростью, но о направлении этой скорости принцип сохранения энергии не говорит абсолютно ничего, так как кинетическая энергия совершенно не зависит от направления. С одинаковым  [c.580]

Из этих соотношений следует, что если частица существует в течение короткого промежутка времени Д/, то ее энергия может флук-туи овать на величину Й/2Д/, а если частица находится лишь в области размера Дл , то ее импульс флуктуирует на величину Н/2Ах. Таким образом, в течение малых промежутков времени может временно нарушаться закон сохранения энергии, а в процессах, происходящих внутри малых объемов, могут происходить местные нарушения закона сохранения импульса. Рассмотрим простой пример. Если свободная частица имеет энергию Ер, то ее волновая функция Ч " (/) гармонически зависит от времени,  [c.315]

Наиболее простыми примерами, иллюстрирующими инвариантность законов механики, являются задачи, в которых применяется не сам второй закон Ньютона, а вытекающие из него законы сохранения импульса и энергии, применяемые для решения задачи об ударе. Это и понятно, так как в задачах об ударе мы не рассматриваем сил и ускорений и пользуемся только лишь формулами преобразования скоростей, связь между которыми устанавливается на рсновании законов сохранения. Первым таким примером может служить задача об абсолютно неупругом ударе, рассмотренная в 59. Действительно, из закона сохранения импульса при этом рассмотрении была получена формула преобразования скоростей (9.14), которая представляет собой частный случай общей формулы (9.48), вытекающей из преобразований Лорентца — Эйнштейна. Следовательно, если бы мы шли по обратному пути, т. е. применили бы формулу (9.48) к преобразованию скорости при переходе от системы /< к системе К, то убедились бы, что закон сохранения импульса соблюдается в системе К.  [c.294]


В этой глаие мы начнем с рассмотрения связей, наложенных на систему мы покажем, что связи можно ввести как предельный случай обычной потенциальной энергии. Затем обсуждается принцип Д Аламбера и на его основе выводятся уравнения Лагранжа первого рода, которые используются в нескольких простых примерах. Выводится вариационный принцип Гамильтона, с помощью которого получаются уравнения Лагранжа второго рода, после того как вводятся обобщенные координаты. После этого рассматриваются циклические координаты, функция Рауса и скрытые массы. Далее кратко обсуждаются неголоном-ные и неинтегрируемые связи и потенциалы, зависящие от скорости специально рассмотрен случай движения заряженной частицы в электромагнитном поле. В конце главы обсуждается связь между бесконечно малыми преобразованиями координат и законами сохранения.  [c.38]


Смотреть страницы где упоминается термин Простые примеры на закон сохранения энергии : [c.326]    [c.173]    [c.53]   
Смотреть главы в:

Беседы о механике Изд4  -> Простые примеры на закон сохранения энергии



ПОИСК



Закон сохранения

Закон сохранения энергии

Сохранение

Сохранение энергии



© 2025 Mash-xxl.info Реклама на сайте