Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основной постулат МСС и термодинамика

В термодинамике постулируется, что изолированная макроскопическая система с течением времени приходит в состояние термодинамического равновесия и никогда самопроизвольно выйти из него не может (первый, или основной, постулат термодинамики).  [c.17]

В термодинамике постулируется, что у изолированной системы существует состояние термодинамического равновесия, в которое она приходит с течением времени и из которого никогда самопроизвольно выйти не может (первый, или основной, постулат термодинамики).  [c.15]


Глава 10. Основные постулаты термодинамики необратимых процессов  [c.330]

ГЛАВА 10. ОСНОВНЫЕ ПОСТУЛАТЫ ТЕРМОДИНАМИКИ НЕОБРАТИМЫХ ПРОЦЕССОВ  [c.331]

Как было сказано выше, в состояниях, близких к состоянию термодинамического равновесия термодинамические потоки можно представить в виде линейных функций от термодинамических сил (основной постулат термодинамики необратимых процессов)  [c.93]

Настоящая книга является дальнейшим развитием работ автора, посвященных термодинамическому анализу прямых и обратных циклов. В первых двух главах сделана попытка чрезвычайно кратко описать сущность термодинамического метода исследования и конспективно изложить основные постулаты термодинамики, а также уточнить ряд термодинамических представлений. В этих главах изложены главным образом те вопросы, которые непосредственно относятся к анализу циклов и схем термотрансформаторов.  [c.14]

Основные постулаты классической термодинамики  [c.147]

Следствием всех трех постулатов (о равновесии, о температуре и о зависимости энергии от температуры) является то, что в равновесных системах все внутренние термодинамические свойства можно рассматривать как функции внешних свойств и энергии системы. Таким образом, исходные постулаты термодинамики гарантируют возможность использования в качестве аргументов термодинамических функций равновесных систем полного набора внешних переменных и температуры или энергии. Независимые переменные могут быть выбраны иначе (при сохранении их общего количества), однако возможность их замены в указанном основном, каноническом, наборе требует дополнительных обоснований.  [c.27]

Возможность создания такой машины, называемой вечным двигателем второго рода , не противоречит первому закону термодинамики. Однако все известные на сегодня результаты опытов свидетельствуют о том, что создание вечного двигателя второго рода является столь же неразрешимой задачей, как и изготовление вечного двигателя первого рода . Этот опытный факт принят в термодинамике в качестве второго основного постулата — второго закона термодинамики.  [c.105]

Физическая сущность и основной постулат второго начала термодинамики  [c.137]

Такую формулировку второго закона можно было бы назвать локальной формулировкой в противоположность глобальной формулировке классической термодинамики. Значение подобной новой формулировки состоит в том, что на сс основе возможен гораздо болсс глубокий анализ необратимых процессов, и она является основным постулатом, на котором базируется настоящая книга. Этот постулат можно обосновать с помощью методов статистической механики [34].  [c.35]


Основной чертой термодинамики необратимых процессов является определение величины прироста энтропии и потока энтропии на основе уравнения Гиббса (3.17). Этот метод должен быть в дальнейшем обоснован с помощью статистической механики необратимых процессов. Действительно, уравнение Гиббса (3.17) первоначально было сформулировано для равновесных условий, и приложение его к условиям, когда равновесие отсутствует, составляет своего рода новый постулат, на котором базируется вся термодинамика необратимых процессов.  [c.107]

Общетеоретическая часть учебника Мерцалова имеет следующее содержание введение механический эквивалент тепла уравнение лживых сил в применении его к термодинамике характеристическое уравнение система координат р—изображение различных процессов в системе координат р—и процессы изотермический и адиабатический обратимые и необратимые процессы коэффициент полезного действия постулат Клаузиуса принцип Томсона цикл Карно зависимость к. п. д. цикла Карно от температур источника теорема Клаузиуса энтропия система координат Т—5 политропные кривые характеристическое уравнение насыщенного пара применение первого принципа термодинамики к насыщенным парам уравнение Клапейрона выражение энтропии насыщенного пара изображение процесса парообразования в системе координат Т—5 построение тепловой диаграммы для насыщенного пара некоторые частные процессы для насыщенного пара процесс паровой машины свойства перегретого пара основные уравнения термодинамики для перегретого водяного пара цикл паровой машины для перегретого пара.  [c.113]

Если в термомеханической задаче поле температуры не задано, то система уравнений (I), (II), (III), (VII) незамкнута и должна быть дополнена уравнением, определяющим температуру Т. Для этого нужно рассмотреть термодинамику частицы постоянной массы m=pAV. Пользуясь общепринятым неопределенным термином энергия и основным постулатом, можно утверждать, что если  [c.61]

Основной постулат МСС и термодинамика 141  [c.141]

ОСНОВНОЙ ПОСТУЛАТ МСС и ТЕРМОДИНАМИКА  [c.141]

В основу построений основных принципов термодинамики может быть положено лишь такое общее определение внутренней энергии тел, которое не ограничивает возможностей строгого построения термодинамики на базе постулатов общечеловеческого опыта. Внутренней энергией тела называется полный запас энергии внутреннего состояния тела, определяемый в зависимости от деформационных координат и температуры ( 2, п. е)  [c.32]

В гл. 1 дана термодинамическая классификация циклов и схем, а также основные определения. В гл. 2 Постулаты термодинамики приведены некоторые, если так можно выразиться, комментарии к основным законам термодинамики. В этих комментариях содержатся интересные мысли, которые касаются вопросов, не всегда освещенных в учебниках по технической термодинамике, но имеющих существенное значение в ее прилол<ениях.  [c.8]

По-видимому, последовательность изложения требовала бы поместить главу о постулатах термодинамики ранее, чем настоящую. Но стремление сократить изложение всей книги заставило автора в ущерб систематичности начать ее с главы, посвященной классификации, и с определений основных термодинамических величин.  [c.15]

Из двух основных законов термодинамики первый есть закон сохранение энергии ясно, что этот закон при нашем построении теории в доказательстве не нуждается, ибо в механике он является просто математическим фактом (энергия есть интеграл уравнений движения) любая механическая концепция тепловых процессов поэтому уже включает в себя этот закон как первичный постулат.  [c.89]

В 50-х годах прошлого столетия Клаузиусом была дана наиболее общая и современная формулировка второго закона термодинамики в виде следующего постулата Теплота не может переходить от холодного тела к более нагретому сама собой даровым процессом (без компенсации) . Постулат Клаузиуса должен рассматриваться как закон экспериментальный, полученный из наблюдений над окружающей природой. Заключение Клаузиуса было сделано применительно к области техники, но оказалось, что второй закон в отношении физических и химических явлений также правилен. Постулат Клаузиуса, как и все другие формулировки второго закона, выражает собой один из основных, но не абсолютных законов природы, так как они были сформулированы применительно к объектам, имеющим конечные размеры в окружающих нас земных условиях.  [c.108]


Основанные на макроскопическом опыте представления об особенностях термодинамического равновесия конечных систем принимаются в термодинамике в качестве постулатов, опираясь на которые с помощью основных законов (начал) термодинамики изучаются свойства равновесных систем и закономерности при их приближении к равновесию.  [c.16]

Вывод о существовании энтропии 5 и абсолютной температуры Т как термодинамических функций состояния любых тел составляет основное содержание второго начала термодинамики (по терминологии Н. И. Белоконя — второго начала термостатики). Математическое выражение в форме равенства 6Q= 8Q +6Q = TdS распространяется на любые процессы — обратимые и необратимые. В качестве постулата для вывода этого закона может быть использовано утверждение, что температура есть единственная функция состояния, определяющая направление самопроизвольного теплообмена между телами, т. е. между телами и элементами тел, не находящимися в тепловом равновесии, невозможен одновременный и самопроизвольный (по балансу) переход теплоты в противоположных направлениях — от тел более нагретых к телам менее нагретым и обратно [7]. Из этого постулата вытекает ряд важных следствий о невозможности одновременного осуществления полных превращений теплоты в работу и работы в теплоту (следствие 1), о несовместимости адиабаты и изотермы (следствие 2), теорема о тепловом равновесии тел (следствие 3) [7].  [c.57]

Из сказанного выше следует, что основной постулат термодинамики необратимых процессов заключается в следующем в неравновесной термодинамической системе имеют место линейные соотношения между обобсценными потоками и обобш,енными силами одной тензорной размерности-, из этих линейных соотношений составляется выражение для изменения энтропии системы во времени.  [c.340]

Вероятностное поведение макроскопических систем , состоящих из громадного числа механически движущихся частиц, является характерной особенностью теплового движения, качественно отличающей его от классического механического движения с присущей ему однозначностью. Наличие огромного числа частиц в термодинамических системах обусловливает второстепенность механических закономерностей движения отдельных частиц и возникновение закономерностей их совокупного, массово] о движения. Принимая основной (первый) постулат, термодинамика таким образом ограничивает себя, исключая из рассмотрения системы, для которых равновесное состояние невозможно (процессы в таких системах не завершаются наступлением равновесия), а также все  [c.17]

Значение второго начала термодинамики шире тех следствий, которые вытекают из рассмотрения цикловых процессов по Р. Клаузиусу, что подтверждено многолетним опытом применения этого фундаментального закона в различных областях науки и техники. В связи с этим было признано целесообразным основной постулат его вводить по М. Планку, у которого второе начало истолковьгеается как закон, утверждаюш,ий, что в любом естественном процессе сумма энтропий всех тел, участвующих в процессе, возрастает .  [c.4]

Предъявляемым требованиям удовлетворяет постулат, основанный на законе возрастания энтропии (см. 9.3), что было отмечено еще М. Планком (см. предисловие). Если помимо реальных необратимых процессов учесть как предел допустимого идеальные обратимые (равновесные) процессы, то основной постулат второго начала термодинамики может быть ВЕ,1ражен следующим образом сумма энтропий всех тел (число которых п), принимающих участие в преобразовании энергии, не может уменьшаться-.  [c.138]

Для оценки совершенства термодинамических циклов ДВС сравним их по эффективности превращения теплоты в работу. Научно обоснованный метод анализа, отвечающий основному постулату второго начала термодинамики, заключается в замене рассматриваемого цикла эквивалентным циклом Карно путем введения среднетермодинамических температур 7 подвода и отвода теплоты [по формуле (3.35)]. При этом для любого цикла имеем по формуле (8.8)  [c.237]

Возможно несколько подходов к термодинамической тео рии сплошных сред. Эти подходы различаются основными постулатами, на которых основывается теория. Кроме того, в каждом подходе возможно использование нескольких методов описания диссипативных эффектов. В данном изложении термодинамическая теория диссипативных материалов строится аналогично рациональной термодинамике. Этот подход был предложен Колеманом и Ноллом [30] и в дальнейшем развит в работах [26—29, 83—86]. Внутренняя диссипация выражается через внутренние параметры, согласно Колеману и Гуртину  [c.97]

Закон сохранения движения — даже не физический, а надфизи-ческий, всеобщий закон природы. Поэтому в термодинамике он должен быть принят без доказательства как один из основных постулатов. Весь человеческий опыт подтверждает, что любая система в любом состоянии — спокойном или сколь угодно бурном — имеет определенную энергию. Если система состоит из механической и термической частей, общая их энергия должна сохраняться и, следовательно, изменение энергии механической системы должно быть одним и тем же, когда термическая система переходит из состояния (1) в состояние (2). Поэтому можно судить об изменении энергии термической системы, природа которой нам плохо известна, по изменению энергии связанной с ней механической системы, свойства которой мы знаем.  [c.17]

В основу термодинамики и теории уравнений состояния в МСС положен принцип, называемый (основным) постулатом макроскопической определимости для данного вещества макроскопическое состояние, т. е. реакция R(t) и любая макроскопическая величина в точке х= onst, в момент t однозначно определяется процессом П(т). В нем содержится утверждение локальной определенности состояния, т. е. независимости (0 в точке х от П(т) в других точках (x =x-i- ), и полноты системы внутренних (в  [c.143]


Принцип Онзагера. Прежде чем применить формализм неравновесной термодинамики непрерывных сред к описанию процессов тепло-массопереноса в ламинарном (а далее и в турбулентном (Гл. 5)) потоке многокомпонентной смеси, обсудим очень кратко сущность тех основных постулатов, которые лежат в основе теории и могут быть практически использованы при термодинамическом анализе любого необратимого процесса (протекающего, в том числе, и в турбулизованном континууме).  [c.86]

По поводу применимости тождества Гиббса для неравновесных процессов в непрерывной термодинамической системе отметим следующее. Согласно принципу квазилокалъного равновесия (основного постулата неравновесной термодинамики) всю систему можно разбить на достаточно малые макроскопические области, каждую из которых можно рассматривать как равновесную (точнее квазиравновесную) термодинамическую систему. В случае, если в качестве переменных состояния смеси выбраны удельная плотность внутренней энергии е(г,Г), удельный объем v(r,r) и удельные концентрации Z (r,t) (а = 1,2,...,// )  [c.89]

Прежде чем применить формализм неравновесной термодинамики сплошных сред к описанию процессов тепло- и массопереноса в турбулентном потоке многокомпонентной сжимаемой смеси, сформулируем еще раз сущность тех основных постулатов, которые лежат в основе теории и могут быть практически использованы при термодинамическом анализе любого необратимого процесса, в том числе и для турбулизованного многокомпонентного континуума Це Гроот, Мазур, 1964)  [c.210]

Существуют и другие формулировки основного принципа пластичности, отличные от формулировки Мизеса, но по существу ей эквивалентные. Следует заметить, что принцип Мизеса не есть универсальный закон природы, он не вытекает из начал термодинамики. Американский ученый Друкер, который предложил эквивалентный постулат в несколько иной форме, называл его квазитермо-динамическим и подчеркнул, что смысл его состоит в выделении класса хороших в определенном смысле материалов.  [c.61]

Вывод о существовании энтропии и абсолютной температуры как термодинамических функций состояния любых тел составляет основное содержание второго начала термодинамики (по терминологии проф. Н. И. Белоконя — второго начала термостатики). Математическое выражение в форме равенства 5Q = 5Q + 50 = Тс18 распространяется на любые процессы — обратимые и необратимые. В качестве постулата для вывода этого закона может быть использовано утверждение, что температура есть единственная функция состояния, определяющая направление самопроизвольного теплообмена между телами .  [c.48]

Как уже упоминалось, термодинамика является наукой феноменологической. Основу термодинамического метода составляют постулаты и три закона (или начала) термодинамики. Оказывается возможным, исходя из небольшого числа общих законов, получить в термодинамике весьма глу(юкие результаты. В этом смысле изложение термодинамики мэжно построить таким же образом, как это делается, скажем, в евклидовой геометрии. Перейдем к изложению основных понятий и определений термодинамики.  [c.30]

Одним из основных представлений, развиваемых Пригожиным является понятие о негоэнтропии - энтропии, которую получает открытая система извне. Принцип Пригожина относится к одно.му из постулатов неравновесной термодинамики в любой неравновесной системе существуют локальные участки, находящиеся в равновесном состоянии. В классической термодинамике равновесие относится ко всей системе, а в неравновеснбй - только к ее отдельным частям. Это означает, что термодинамические функции состояния зависят от координат системы и времени процесса. Классическая термодинамика игнорирует подобную зависимость. Важно подчеркнуть, что продолжительность внешнего воздействия значительно превышает время элементарного процесса формирования равновесия в отдельных частях системы х,, т,е, х х .  [c.65]


Смотреть страницы где упоминается термин Основной постулат МСС и термодинамика : [c.4]    [c.9]    [c.6]   
Смотреть главы в:

Механика сплошной среды Изд3  -> Основной постулат МСС и термодинамика



ПОИСК



Основные постулаты термодинамики необратимых процессов

Постулаты термодинамики

Термодинамика

Физическая сущность и основной постулат второго начала термодинамики



© 2025 Mash-xxl.info Реклама на сайте