Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О понятиях скорости и ускорения материальной точки

О понятиях скорости и ускорения материальной точки 21  [c.21]

Галилей в противоположность схоластическим воззрениям признавал необходимость опыта для обоснования механики и физики и последовательно проводил эту точку зрения в своих научных изысканиях. Галилей является основоположником важнейшего раздела механики — динамики, т. е. учения о движении материальных тел. Он впервые ввел понятия скорости и ускорения движущегося тела при неравномерном прямолинейном поступательном движении и установил на основании своих опытов точные законы падения тел в пустоте, отметив тот важный факт, что в данном месте наблюдения все тела падают в пустоте с одним и тем же постоянным ускорением, не зависящим от веса падающего тела тем самым он опроверг неверное воззрение, твердо державшееся в науке о времен Аристотеля, что из двух тел, падающих на землю, более тяжелое тело движется быстрее.  [c.18]


В кинематике сплошных сред, наряду с принятыми в кинематике дискретной системы точек понятиями перемещений, скоростей и ускорений, появляется характерное для сплошной среды представление о бесконечно малой деформации среды, определяемой тензором деформаций. Если рассматривается непрерывное движение текучей среды, то основное значение приобретает тензор скоростей деформаций, равный отношению тензора бесконечно малых деформаций к бесконечно малому промежутку времени, в течение которого деформация осуществилась. Как с динамической, так и с термодинамической стороны модель сплошной среды отличается от дискретной системы материальных точек тем, что вместо физических величин, сосредоточенных в отдельных ее точках, приходится иметь-дело с непрерывными распределениями этих величин в пространстве — скалярными, векторными и тензорными полями. Так, распределение массы в сплошной среде определяется заданием в каждой ее точке плотности среды, объемное силовое действие — плотностью распределения объемных сил, а действие поверхностных сил — напряжениями, определяемыми отношением главного вектора поверхностных сил, приложенных к ориентированной в пространстве бесконечно малой площадке, к величине этой площадки. Характеристикой внутреннего напряженного состояния среды в данной точке служит тензор напряжений, знание которого позволяет определять напряжения, приложенные к любой произвольно ориентированной площадке. Перенос тепла или вещества задается соответствующими им векторами потоков.  [c.9]

В кинематике вводится понятие о сложном движении точки. Смысл понятия сложного движения тесно связан с относительным характером движения сложное движение по определению состоит из заданного движения точки в некоторой движущейся системе и движения этой системы в неподвижной. Однако в курсах физики часто говорится о том, что тело (или материальная точка) участвует в нескольких движениях, в связи с чем формально складывают или разлагают на составляющие векторы скорости и ускорения.  [c.68]

Понятие об инерциальной системе отсчета связано с понятием об изолированной материальной точке, т. е. точке, которая находится на весьма больших расстояниях от всех прочих тел. Согласно опыту ускорения изолированной точки, вызываемые телами, будут исчезающе малыми. Вместе с тем экспериментальные исследования показывают, что относительно одних систем отсчета ускорение такой точки равно нулю, а относительно других систем изолированные точки движутся ускоренно. Например, возьмем изолированную точку, покоящуюся относительно системы S и занимающую положение х=Хо, y=z—0 (рис. 1.15, а). Тогда ускорение точки относительно S равно нулю. Теперь рассмотрим ту же точку в системе S , вращающейся относительно S с постоянной угловой скоростью О) вокруг оси Oz (для простоты совместим начала систем О, О и оси Ог, О г ). Ясно, что относительно 5 точка будет двигаться по окружности радиуса л о, и поэтому ее ускорение относительно S отлично от нуля (рис. 1.15,6).  [c.35]


Механика изучает связи между силами и вызываемыми этими силами движениями и делится на математическую и опытную механику. В математической механике устанавливаются понятия о массе т материальной точки (если ограничиться для простоты рассмотрением материальной точки), скорости точки ее ускорении ТГ = ее количестве движения В = тУ и, наконец, о приложенной к точке силе которая задается как вектор, приложенный к рассматриваемой точке и зависящий от времени, положения точки и ее скорости. Принимают, что на точку действуют несколько сил 2 1, 1 2, , которые перечисляются и называются данными равнодействующая этих сил Р = 4- 2 +  [c.68]

Первыми понятиями, связанными с представлениями о движении материальной то чки, с которыми мы встречаемся в кинематике, являются понятия скорости и ускорения материальной точки в пространстве и характер изменения ее параметров. В ряде случаев параметры, определяюн1,ие положение материальной точки, находятся в некоторой сложной зависимости, которую необходимо раскрыть для полного определения движения материальной точки.  [c.6]

В приведённую выше схему (в несколько более сложном варианте для физико-математических моделей, когда речь идёт как о физических свойствах, так и об их математическом описании) укладывается и развитие отдельных понятий. Уточнение смысла основных применяемых понятий дано в заметках первой главы работы. Дано обобщение понятия материальной точки (заметка 1), рассмотрены понятия скорости и ускорения (заметка 2), обсуждается соотношение виртуальных перемещений и вариаций, используемых в дифференциальных и интегральных принципах (заметка 3). Закон Ньютона о действии и противодействии получен как следствие принципа равновесия Даламбера и второго закона Ньютона. Прослеживается логическая цепь, соединяющая принцип равновесия Даламбера с уравнениями даламберова равновесия , использующими понятие о силе инерции. Предложено описание взаимодействия в форме интегрального равенства (заметка 4). Обсуждаются аналоги теоремы об изменении кинетической энергии для реономных систем и место функции Гамильтона в уравнении энергии  [c.12]

Краткие исторические сведения о развитии кинематики. Если механика как наука о движении и равновесии материальных тел существует десятки столетий, то кинематика как самостоятельный ее раздел возникла сравнительно недавно. Основные понятия кинематики — скорость и ускорение (при прямолинейном движении) — были введены Г. Галилеем (1564— 1642) в первой половине XVII в. Он же сформулировал закон сложения скоростей. Общее попятив ускорения было введено Ньютоном. Кинематика твердого тела была разработана академиком Российской Академии наук Л. Эйлером (1707—1783) в труде Теория движения твердых тел (1765).  [c.144]

Но этого еще недостаточно для того, чтобы привести доступные нам эксперименты к той схематической простоте, которая позволила бы выяснить характеристические свойства, присущие понятию о силе. Все тела обладают известным протяжением) мы видели при изучении кинематики, что даже в частном случае движения твердой системы кинематические элементы (скорости, ускорения, траектории) отдельных точек, вообще говоря, отличаются друг от друга. Поскольку мы здесь предполагаем сделать общие индуктивные выводы о характере. сил путем анализа их динамического эффекта, совершенно ясно, что указанное многообразие одновременных кинематических особенностей неизбежно должно маскировать явления и даже отвлекать наше внимание от возможного схематического изображения всего процесса в целом. Чтобы элиминировать. это многообразие усложняющих обстоятельств, целесообразно ограничиться сначала телами настолько малыми (по сравнению с размерами области, в которой происходит движение), чтобы положение тела можно было определить без значительной погрешности геометрической точкой. 13сякое тело, рассматриваемое о этой точки зрения, принято называть материальной точкой. Это название не только не противоречит нашим наглядным представлепяям о конкретных явлениях, но, как было уже указано в кинематике (II, рубр. 1), соответствует уже установившимся взглядам так, например, положение судна на море обыкновенно определяют долготой и широтой места но в действительности эти координаты определяют только одну геометрическую точку на земной поверхности, которую мы отолсествляем с нашим судном в силу его незначительных размеров по сравнению с размерами земли точно так же, чтобы привести пример, еще лучше соответствующий приведенному выше определению, мы изображаем все звезды точками на небесной сфере, хорошо зная, как велики их размеры по сравнению с телами на земле.  [c.300]


Герц поставил перед собой задачу, обратную той, которую так пли иначе решает элементарная механика нельзя ли все собственно силы свести к силам ограничения движения Возможно, что вообш,е все наблюдаемые изменения скорости, которые не требуются как будто с точки зрения геометрических связей, вызваны па самом деле не силами, а именно какими-то, может быть, еще не исследованными, геометрическими связями. Сама сила есть лишь способ описания этих связей, применимый при известных допуш,еннях, но отнюдь не являющийся необходимым для однозначного и ясного научного познания мира. Понятие о силе как о причине замедления или ускорения в механике Г. Герца исчезает бесследно. Сила, с точки зрения Герца, является только мерой переноса или взаимопреоб-разования движения между прямо связанными системами. Загадочная потенциальная энергия консервативных систем обычной механики оказывается обычной кинетической энергией скрытых материальных систем. В основе действий, наблюдаемых между удаленными телами (например, планетами) лежит материальный процесс, протекающий в скрытых материальных системах, связывающих обычные или наблюдаемые системы.  [c.237]

Традиционная модель реактивного движения, о которой сейчас идет речь, строится на классическом представлении об импульсе материальной точки через хорошо всем известное, стандартное соотношение в виде произведения массы этой точки на скорость ее движения. Такой стандартный и во многом консервативный подход к понятию количества движения в конечном итоге не позволяет получить точные уравнения движения точки переменной массы с учетом ускорения изменения массы этой точки. Вопросам такого учета изменения массы, приводяш его к появлению гиперреактивной силы в уравнениях движения, посвяш ена вторая часть книги.  [c.46]

Механика Аристотеля содержала в себе основные идеи общего подхода к описанию механического движения материальных тел. Эти идеи полностью сохранили свое значение и в механике Ньютона, одна о теория движения Аристотеля после примерно двухтысячелетнего господства была заменена теорией Ньютона. Аристотель считал, что все движения материальных тел можно разделить на две категории естественные и насильственные . Естественные движения осуществляются сами по себе, без каких-либо воздействий. Ставить вопрос о причине естественных движений бессмысленно. Точнее говоря, на вопрос почему осуществляется некоторое естественное движение - всегда имеется готовый, не требующий размыщлений ответ потому что это движение естественное, происходящее именно так, а не иначе, без каких-либо внешних воздействий. Насильственные движения сами по себе не происходят, а осуществляются под влиянием внешних воздействий, описываемых с помощью понятия силы. На вопрос почему осуществляется некоторое насильственное движение ответ гласит потому что на тело действует сила, под влиянием которой оно движется так, как движется. Естественными Аристотель считал движения легких тел вверх, тяжелых тел вниз и движение небесных тел по небесной сфере. Остальные движения насильственные. Заметим, что если тело покоится в результате невозможности осуществить естественное движение , то этот покой насильственный . Например, если тело покоится на горизонтальном столе, то отсутствие его движения по вертикали является насильственным и обусловливается наличием соответствующей силы, действующей в вертикальном направлении, а отсутствие его движения по горизонтали обусловливается отсутствием силы, действующей в горизонтальном направлении. Это показывает, что закон движения не может быть положен в основу определения силы, хотя силу и можно находить из закона движения. Это замечание полностью относится и к попыткам использования второго закона Ньютона как определения силы. В механике Аристотеля сила обусловливает скорость тела, а понятие об ускорении отсутствует.  [c.12]


Смотреть страницы где упоминается термин О понятиях скорости и ускорения материальной точки : [c.225]    [c.62]   
Смотреть главы в:

Метод переменного действия Изд2  -> О понятиях скорости и ускорения материальной точки



ПОИСК



407 — Точка — Скорости и ускорения

Материальная

Понятие скорости точки

Понятие ускорения точки

Скорость Понятие

Скорость и ускорение

Скорость материальной точки

Скорость точки

Точка материальная

Ускорение материальной точки

Ускорение точки



© 2025 Mash-xxl.info Реклама на сайте