Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о концентрации напряжений. Виды концентрации напряжений

Основными задачами, которые приходится решать каждому конструктору при анализе прочности и выборе средств предотвращения разрушения конструкции, являются установление наиболее вероятных из разнообразных видов механического разрушения, встречающихся в инженерной практике, и оценка возможности разрушения конструкции в процессе ее эксплуатации. В соответствии с этим в книге сначала приводятся определения и указываются характерные признаки различных видов механического разрушения, а затем наиболее важным из них посвящаются целые главы. Вследствие большого практического значения очень подробно рассматривается усталостное разрушение, причем уделяется внимание как многоцикловой, так и малоцикловой усталости. Достаточно подробно рассматриваются также хрупкое разрушение, ползучесть, разрыв при ползучести, фреттинг-усталость, фреттинг-износ, удар, выпучивание и некоторые другие виды разрушения. Отдельная глава посвящена концентрации напряжений. Основные понятия механики разрушения излагаются при описании хрупкого и усталостного разрушения.  [c.7]


Известно, что коэффициент концентрации напряжений определяется в основном длиной концентратора и радиусом кривизны его контура в точке действия максимальных напряжений. Это позволяет в ряде случаев при определении концентрации напряжений изучаемый концентратор заменить на эквивалентный, решение для которого известно. Можно ввести понятие а.эквивалентного эллипса (эквивалентный эллиптический вырез), позволяющее определить максимальный коэффициент концентрации напряжений для концентратора в виде тре  [c.185]

При анализе прочности в случае наличия трещин используют понятие о концентрации напряжений в том виде, в каком оно разработано в теории упругости. Основная конфигурация рассматриваемого образца показана на рис. 2. Этот лист с эллиптическим отверстием, к которому приложена осевая растягивающая нагрузка  [c.428]

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются еще некоторыми гипотезами, общий вид которых устанавливается с помощью качественных физических рассуждений или же подбирается из соображений простоты. Принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения постоянных, входящих в используемые полуэмпирические соотношения.  [c.14]

Полуэмпирические теории турбулентности строятся на основе аналогии между турбулентностью и молекулярным хаосом. В них основную роль играют такие понятия, как путь перемешивания (аналог средней длины свободного пробега молекул), интенсивность турбулентности (аналог средней скорости движения молекул), коэффициенты турбулентной вязкости, теплопроводности и диффузии. На основе той же аналогии делается предположение о существовании линейной зависимости между тензором турбулентных напряжений и тензором средних скоростей деформации, а также турбулентным потоком тепла (или пассивной примеси) и средним градиентом температуры (или концентрации примеси). Эти предполагаемые зависимости дополняются затем еще некоторыми гипотетическими закономерностями, общий вид которых устанавливается с помощью качественных физических рассуждений или же просто подбирается наудачу из соображений простоты. Далее принятые предположения (или какие-либо простые следствия из них) проверяются на эмпирическом материале, и при этом попутно находятся значения неопределенных постоянных, входящих в используемые полуэмпирические соотношения. Если результаты проверки оказываются удовлетворительными, то полученные выводы распространяются на целый класс турбулентных течений, родственный тем, к которым относились выбранные для проверки теории эмпирические данные.  [c.19]


Уравнение сохранения г-й компоненты, интегральная и дифференциальная формы. Уравнение неразрывности смеси, диффузионные потоки, массовая концентрация. Уравнение сохранения импульса, интегральная форма для подвижного объема. Тензор напряжений, давление, поток импульса. Уравнение энергии, интегральная форма для неподвижного объема. Уравнение притока тепла. Уравнение сохранения для частных видов энергии. Понятие энтропии, уравнение производства энтропии в интегральной и дифференциальной формах.  [c.15]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

Для описания кривой усталости и условий усталостного разрушения в связи с асимметрией цикла и при плоском напряженном состоянии были привлечены, с одной стороны, характеристики несовершенной упругости в виде ширины петли гистерезиса, с другой — статистические представления об усталостном разрушении в связи с вероятностными представлениями о действительной напряженности поликристалла. Развитие статистического аспекта усталостных процессов дало возможность охарактеризовать влияние структурной неоднородности на условия подобия и заменить условные понятия чувствительности к концентрации напряжений зависимостью максимальных разрушающих напряжений в зонах концентрации от дисперспи усталостных свойств и неоднородности напряженного состояния.  [c.41]

В заключение добавим, что понятие физического предела выносливости распространяется, по-видимому, лишь на стандартные образцы и на относительгю небольшие детали машин с тщательно отшлифованной поверхностью и при отсутствии концентраторов напряжений как конструктивных, так и технологических в виде раковин, шлаковых включений и т. п. Однако, когда речь идет о крупногабаритных деталях, в особенности таких, которые включают сварные швы, а также имеют грубо обработанную поверхность, указанный вывод может ока.заться неправильным. Дело в том, что эти и другие подобные причины технологического происхождения могут создавать неучтенную концентрацию напряжений в малых зонах, где местные напряжения оказываются достаточными для развития усталостных повреждений на протяжении 10. .. 10 циклов. Поэтому к вопросу о физическом пределе выносливости крупногабаритных конструкций и деталей машин следует всегда подходить с большой осторожностью.  [c.341]


Понятие усталости материалов и конструкций охватьтвает чрезвычайно широкий круг вопросов. Усталость может быть причиной разрушения при испытаниях как йростых гладких образцов, так и образцов, содержащих какие-либо виды нерегулярности, или, наконец, сложных деталей, где могут иметь место как концентрация напряжений, так и распределенная нагрузка. На усталость влияет схема распределения нагрузки, причем зта нагрузка может изменяться по частоте, величине и последовательности прикладываемых сил. На усталость могут влиять дакже температура и окружающая среда. Неудивительно, что такой широкий круг переменных величин в сочетании с происходящими время от времени катастрофическими разрушениями деталей в эксплуатации привел к необходимости проведения огромного количества изысканий и исследований явления усталости, причем много сведений уже получено, хотя многое еще необходимо познать.  [c.16]

Коффициент чувствительности д. Эффективные коэффициенты концентрации напряжений всегда ниже теоретических, причем степень этого снижения различна в зависимости от вида стали, формы детали (вида концентратора) и ее абсолютных размеров. Вследствие этого возникает понятие о чувствительности к концентрации напряжений, как об особом свойстве материалов и деталей. Для оценки этого свойства установлено понятие коэффициента чувствительности д детали к концентращии напряжений значения коэффициента q определяются опытным путем.  [c.292]

В последние два десятилетия для оценки прочности металлов при наличии в них трещин применяют положения линейной механики разрушения. Она оперирует с концентраторами, у которых р = 0. В этом случае расчетное механическое напряжение становится равным бесконечности, а понятие коэффициента концентрации напряжений теряет свой смысл. Для оценки поля напряжений вблизи концентратора используют понятие коэффициента интенсивности напряжений в вершине трещины при упругих деформациях, обозначаемого К, и понятие интенсивности освобождения энё ргии деформации, обозначаемой С. Рассмотрим растянутую напряжениями а тонкую бесконечную пластину (плоское напряженное состояние), имеющую разрез в виде трещины а == О (рис. 3.31, а), и в виде выреза с а =5 О (рис. 3.31, б).  [c.114]


Смотреть страницы где упоминается термин Понятие о концентрации напряжений. Виды концентрации напряжений : [c.21]    [c.35]    [c.169]    [c.175]   
Смотреть главы в:

Сопротивление материалов  -> Понятие о концентрации напряжений. Виды концентрации напряжений



ПОИСК



Виды напряжении

Концентрация напряжений

Концентрация напряжений Понятие

Напряжение Понятие

Напряжения Концентрация — си. Концентрация напряжений



© 2025 Mash-xxl.info Реклама на сайте