Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О механизме пластической деформации реальных материалов

Выявленные особенности структурных изменений сплавов показывают, что при разработке оптимального состава смазочных сред необходимо учитывать (применительно к реальным сопряжениям) состав материала узла трения, особенности механизма пластической деформации и диффузионных процессов зоны контактного взаимодействия, а также связанные с ними свойства поверхностных слоев и, что чрезвычайно важно, изменения свойств в процессе трения. В связи с этим можно заключить, что структура поверхностных слоев, определяющих ход процесса контактирования, является одним из ключей не только к управлению механизмом трения и изнашивания, но и к оценке смазочной способности, т. е. созданию наиболее износостойких смазок.  [c.193]


Все реальные твердые вещества даже при малых деформациях обладают пластическими свойствами, что предопределяет смешанные механизмы протекания деформации — упругопластическую деформацию. Так, в различных деталях и конструкциях пластические деформации охватывают, как правило, небольшой объем материала, остальной — испытывает только упругие деформации. Если величина деформации явно зависит от времени, например возрастает при неизменной нагрузке, но обратима, она называется вязкоупругой.  [c.82]

Наконец, возможен и расчет днища по предельной нагрузке, когда материал реального днища заменяют идеальным жесткопластическим телом и определяют то значение нагрузки, при котором в результате развития пластических деформаций конструкция из жесткопластического тела перестает быть жесткой, превращается в механизм (см. 6.6). Расчет по предельным нагрузкам в такой трактовке тесно примыкает к расчету по допускаемым перемещениям. Действительно, достижение предельной нагрузки характеризуется прежде всего резким ростом перемещений. Поэтому расчет днища с отверстиями (по предельной нагрузке) можно рассматривать как упрощенный первый этап полного расчета днища по допускаемым перемещениям.  [c.376]

Влияние всех этих факторов на механизм разрушения целесообразно рассмотреть начиная со случая работы деталей при умеренных температурах (ниже минимальной температуры рекристаллизации, т. е. в два раза более низкой, чем температура плавления соответствующих материалов) и при монотонно возрастающей нагрузке. В этом случае существуют два основных механизма разрушения материала первый характеризуется доминирующей ролью пластического течения, а второй — распространением трещин. Способность металлических кристаллов к пластической" деформации, определяющая пластичность металлов при умеренных температурах, объясняется с позиции теории дислокаций, которую развивает раздел физики твердого тела, называемый дислокационной физикой. Эта теория исходит из того положения, что хотя кристаллы имеют строго периодическое строение, но в реальных кристаллах даже в условиях идеального термодинамического равновесия возможно существование дефектов кристаллической решетки.  [c.80]

Изнашивание является одним из видов поверхностного деформирования и разрушения материалов, осуществляемых в условиях сложной схемы напряженного состояния. Даже при очень малых нормальных нагружениях деформация единичного контакта носит упругопластический или пластический характер. Приложение сдвигающих сил при относительном перемещении контактируемых поверхностей создает облегченные условия к пластическому оттеснению материала, нарушению сплошности адсорбированных пленок окислов и, при благоприятных условиях взаимодействия, к образованию металлических связей. Даже при ничтожно малых скоростях скольжения, когда влиянием элементов температурного поля можно пренебречь, величина остаточного оттеснения материала существенно зависит от характера движения. По этому при разработке методики и создании установок для проведения лабораторных испытаний необходимо стремиться к тому, чтобы характер движения элементов пары трения и условия взаимодействия контактирующих неровностей соответствовали или приближались к реальным условиям работы соответствующих деталей машин и механизмов.  [c.229]


Гриффитс предполагал, что величина бГ есть поверхностная энергия твердого тела, имеющая ту же физическую природу, что и для жидкости. Однако впоследствии выяснилось, что затраты энергии при создании новых поверхностей при развитии трещины связаны главным образом с работой пластической деформации объемов материала, расположенных перед фронтом трещины. Если линейные размеры этих объемов малы сравнительно с длиной трещины, то поток упругой энергии по-прежнему можно вычислить, сообразуясь только с упругим решением, а затрату энергии на разрушение относить теперь к работе пластической деформации. В этом состоит концепция квазихрупкого разрушения, изложенная в [231]. Эта концепция позволила перейти от идеального материала в схеме Гриффитса к реальным материалам. Эффективность этой концепции состоит в том, что разрушение реальных конструкций практически всегда происходит по квазихрупкому механизму — макрохрупкий излом содержит значительные остаточные деформации вблизи поверхности разрушения. Таким образом, оказалось возможным распространить теорию разрушения Гриффитса на решение инженерных проблем. Энергия Г обеспечивает существование твердого тела как единого целого, а при образовании новых поверхностей (из начального разреза) принято считать, что энергия Г имеет поверхностную природу и поэтому может быть выражена соотношением  [c.328]

Квазижидкое течение металла в условиях высоких давлений и деформации сдвига при трении. Уменьшение площади реального контакта вследствие упрочнения материала в процессе приработки приводит к значительному увеличению нормального давления в пятне контакта, а локализация пластической дефор.мации по глубине приповерхностного слоя обусловливает значительное возрастание относительной скорости деформации, которая в условиях, приводящих к формированию ЛКС [8—11], достигает значений около 10 с . Следовательно, деформация микрообъела металла в области пятна контакта при трении происходит в экстремальных условиях высоких нормальных давлений и высоких скоростей деформации сдвига, на несколько порядков превышающих скорости деформации при традиционных методах исследования ползучести металлов. В этих условиях экстраполяция классических концепций деформации может приводить к заблуждениям, поэтому объяснение механиз.ма пластической деформации металла в установившемся режиме граничного трения, начиная с определенных скоростей скольжения, должно базироваться на представлениях о механизмах динамической деформации металла в условиях высоких давлений, высокоскоростных деформаций сдвига и, кроме того, больших градиентов температур по глубине контактной зоны, которые неизбежно должны возникать при высокоскоростной пластической деформации. микрообъемов материала в поверхностных слоях трения.  [c.150]

Описанные выше модели деформационного упрочнения основываются на каком-либо одном механизме накопления дислокаций. Кроме того, в каждой из них используются допущения, упрощающие сложную картину пластической деформации в реальных материалах. Сложность, многоуровневость и разнообразие процессов, сопровождающих деформационное упрочнение, затрудняют возможность создания общей физической теории упрочнения металлов и сплавов. При этом все оценки напряжения, необходимого для продвижения дислокаций через область, имеющую плотность дислокаций р, принимают вид формулы (3.1), а какой конкретный механизм из приведенных действует в том или ином случае, зависит от реальной дислокационной модели, структуры, типа материала и условий нагружения.  [c.101]

Пластическая деформация сопровождается накоплением микротре-щнн, т. е. вызывает повреждаемость материала. Естественно, что реологические соотношения необходимо строить с учетом этого фактора. Это последнее явление в реальных объектах происходит по многочисленным конкретным механизмам, например таким, как в [2П. Для иллюстрации методики расчета деформаций в условиях повреждаемости выберем два часто наблюдающихся случая разрушения, происходящих путем образования трещин отрыва и трещин среза. Условимся не учитывать специфику чисто усталостного разрушения, что не трудно сделать. Отметим еще, что трещины отрыва или среза зарождаются почти исключительно вследствие стесненных микропластиче-ских сдвигов, или, выражаясь другими словами, исчерпания локального ресурса пластичности [31, 32]. Основную роль при этом играют именно пластические сдвиги, т. е. в приведенных выше обозначениях Рз1 и Рзь В то же время неупругие деформации фазового характера (р/-.) или связанные с двойникованием (Р31) существенного вклада в зарождение микротрещин не вносят. Конечно, их косвенное влияние через распределение полей напряжений, зависящее от суммы все.х деформаций, очевидно.  [c.33]


Для статически определимой стержневой системы условие прочности будет выполнено, если условие (2.5.2) не нарушается ни для одного из элементов. Действительно, если хотя бы для одного элемента при некотором значении силы Р условие (2.5.2) нарушается, достаточно увеличить эту силу в п раз, чтобы вся система в целом потекла или разрушилась. В статически определимой системе разрушение одного из стержней или переход его в пластическое состояние превращает систему в механизм, получающий свободу деформироваться неограниченно. Последнее слово употреблено онять-таки в условном смысле. Возможность неограниченной деформации пластического материала относится к случаю идеальной пластичности, реальные материалы обладают упрочнением. С другой стороны, даже система из идеально-пластических стержней при увеличении деформации меняет форму, в результате чего иногда не всегда) увеличение деформации требует увеличения нагрузки.  [c.55]

Образование ячеек, блоков и субзерен или фрагментов настолько распространено при пластическом течении кристаллов, что возникает естественный вопрос, есть ли это только соп1утствующий фактор или разориентация кристалла в принципе необходима для осуществления деформации, т. е. мол ет рассматриваться как один из ее механизмов. Анализ представленных выше опытных данных позволяет отнести фрагментацию (точнее, возникновение матери-.альной и кристаллографической разориентировки в деформируемом объеме) к самостоятельному канал)у пластичности. Процесс поворота вещества не был бы необходим, если бы пластическое течение осуществлялось с участием пяти систем скольжения. В реальных условиях такое требование в подавляющем сл учае не выполняется. В результате разворот оказывается нужным для деблокирования сдвигов.  [c.60]

Смит [94] предложил механизм деформации решетки при прохождении волны. Если материал при воздействии ударной волны не деформируется пластически, то тогда часть образца под нагрузкой будет искажаться упруго. В этом случае в металле возникнут два вида решетки одного и того же типа и ориентации, но с разными параметрами. Это приводит к образованию границы раздела, как показано на рис. 20, а, для двумерной решетки последняя может быть заменена решеткой, которая искажена по трем осям и сопрягается с педеформированным материалом через ряд краевых дислокаций (рис. 20, б). Эта граница может двигаться по нормали путем диагонального движения дислокаций и приводить к необходимому изменению параметра решетки. При иро-хождении волны в идеальном кристалле в металле не должно оставаться образующихся при прохождении волны несовершенств. В реальных же кристаллах дислокации могут задерживаться в металле. Модель Смита подвергалась критике [90]. Хорнбоген [93] модифицировал модель Смита, положив в основу экспериментальные данные, полученные с помощью трансмиссионной электронной микроскопии на образцах железа, подвергнутых воздействию ударных волн. Эти экспериментальные данные позволили предположить, что дислокационные петли образуются, когда волна сжатия входит в кристалл, причем краевая компонента пе тли движется со скоростью ударного фронта, в то время как винтовая компонента задерживается и растягивается по дли 1е [93]. Эта точка зрения в дальнейшем также была подвергнута критике [95], так как в соответствии с объяснением Хорпбогена сегменты краевой дислокации должны двигаться со скоростью фронта ударной волны, которая значительно превосходит скорость сдвиговой волны. Кроме того, в этом случае не должно наблюдаться разницы между дислокационной структурой металлов с ОЦК- и ГЦК-решетками, подвергнутых действию  [c.45]


Смотреть главы в:

Сопротивление материалов пластическому деформированию  -> О механизме пластической деформации реальных материалов



ПОИСК



Деформация механизм

Деформация пластическая

Деформация пластическая механизм

Материал пластический

Пластическая деформаци

Реальный газ



© 2025 Mash-xxl.info Реклама на сайте