Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СТРУКТУРА И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ

СТРУКТУРА И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ  [c.5]

Общим методам исследования структуры и физико — механических свойств дисперсных и композиционных материалов посвящена первая глава. Описывается современное состояние проблемы изучения взаимосвязи структуры и физико —механических свойств дисперсных материалов и композитов. Рассмотрены теории структуры гетерогенных систем. Обсуждается современное состояние теории перколяции и теории фракталов, анализируются возможности развития этих теорий для постановки новых задач и решения проблем механики деформируемого твердого тела.  [c.10]


Микроскопическая неоднородность физико-механических свойств характерна для всякого твердого тела. В металлах она обязана анизотропии кристаллов. Обработанная поверхность в связи с особенностями ее образования отличается несравненно большей неоднородностью как по химической активности, так и физико-механическим свойствам. Кроме того, она имеет много микроскопических дефектов в виде трещин и пустот. Хотя подобные дефекты структуры возникают в процессе образования всей массы металла, но количество их в поверхностном слое возрастает в результате механических и тепловых воздействий при обработке.  [c.56]

Установление зависимостей механических свойств твердых тел и различного рода, структурированных систем, т. е. особенностей протекающих в них процессов деформации и разрушения, от совокупности механических факторов, температуры, состава и структуры исследуемого тела и его физико-химического взаимодействия с окружающей средой.  [c.5]

Дальнейший прогноз свойств связан с использованием итерационного метода, отражающего связь между параметрами предыдущего события и последующего. Отличие синергетического метода анализа механических свойств от методов сплошной среды связано с учетом деградации сплошной среды в связи с ее эволюцией от сплошной в дискретную (фрактальную). Развиваемый новый подход к анализу механического поведения твердых тел базируется на представлениях В.И. Вернадского о единстве природы. Однако на пути познания сложного потребовалось искусственное выделение из объектов и явлений природы определенных качеств и свойств и отнесение их к различным областям. К примеру, изучение свойства воды быть мокрой, т.е. способной смачивать другие объекты, он отнес к области физики поверхностных явлений. Свойство воды быть прозрачной было отнесено к оптике. Вопрос, из чего состоит вода и какова ее структура, стал изучаться различными разделами химии.  [c.234]

Структура твердых тел, описание кристаллических решеток и другие аналогичные вопросы достаточно подробно излагаются в курсе молекулярной физики. Там же описаны механические и тепловые свойства твердых тел. В этой книге рассмотрены главным образом электронные свойства твердых тел. Но прежде необходимо проанализировать типы связи атомов и молекул в кристалле, которые обеспечивают устойчивое существование кристаллической решетки.  [c.332]


Обобщены физико-химические представления о свойствах и строении кристаллов как реальных твердых тел с дефектной структурой. Рассмотрены поверхностные свойства твердых тел, а также влияние поверхностных явлений на рост кристаллов и на их механические свойства. Большое внимание уделено механохимии, которая изучает протекание- химических реакций в условиях механической активации.  [c.4]

Для объяснения результатов эксперимента была предложена модель, использующая представления о ротационной неустойчивости пластической деформации [40, 42]. Считается, что хаотическая структура дислокаций деформируемого твердого тела испытывает ротационные перестроения, при которых часть дислокаций собирается в конечные стенки — ротационные элементы (диполи или квадруполи частичных дисклинаций) (см. рис. 4.6, г, ё). Превращение в структуре протекает лавинообразно (по типу фазового перехода [4, И]), так как взаимодействие диполей инициирует зарождение новых диполей в полях напряжений, созданных уже имеющимися диполями (см. п. 4.1). Во время нарастания плотности дисклинационных диполей 6 и уменьшения плотности хаотических дислокаций р изменяются физико-механические свойства материала, в частности, микротвердость, дисперсия упругой деформации и т. д. При дальнейшем увеличении пластической деформации р становится настолько малой, что ее не хватает для поддержания роста упорядоченной структуры. Сами диполи после остановки теряют активность (например, из-за механизмов релаксации (см. рис. 4.10), поэтому плотность 6 активных диполей падает. Вследствие малости количества очагов перестройки хаотические дислокации вновь начинают размножаться под действием внешней нагрузки, вызывая новое изменение физических параметров твердого тела. Дальнейшее увеличение р повторно вызывает лавинообразную перестройку хаотической структуры в ротационную и т. д. Таким образом, возникает колебательный режим в неравновесной двухкомпонентной термодинамической системе (см. 1).  [c.136]

Поверхность твердого тела в общем случае представляет собой довольно сложную систему, структура и состояние которой зависят от физико-механических свойств исходного материала, обработки поверхности, внешних воздействий (приложения нагрузки, наличия трения, влияния окружающей среды и др.) и изменяются во времени в процессе этих воздействий.  [c.44]

Целью настоящего учебного пособия является систематическое изложение основ физики твердого тела, включающих общие представления о строении кристаллов и аморфных веществ, методах исследования структуры, а также различных свойствах механических, тепловых, магнитных, оптических и др.  [c.8]

Можно указать на несколько факторов, вызывающих появление подобных дефектов. К ним относятся в первую очередь кинетические факторы, связанные с тем, что кристалл не успевает стать идеальным в процессе кристаллизации и последующей обработки. Далее следует указать, что при не слишком низких температурах из-за конкуренции энергетического и энтропийного факторов присутствие в кристалле некоторого количества дефектных мест будет отвечать термодинамическому равновесию. Наконец, уже созданные идеальные кристаллы могут оказаться испорченными под влиянием факторов (механической обработки, действия радиации), нарушающих строгую периодичность расположения атомов. По этим причинам реальные кристаллы имеют дефекты, и физические свойства кристалла формируются под совместным действием строгой периодичности и отступлений от нее. Можно привести немало примеров, свидетельствующих о важности учета вклада дефектов в формирование свойств материалов. Так, без учета этого вклада оказалось невозможным построение теории прочности и пластичности материалов, поскольку эти характеристики определяются степенью сопротивления тела действию сил, смещающих разные части тела относительно друг друга. Под действием радиации (мощные световые потоки, пучки электронов, нейтронов, заряженных ядер и т. д.). отдельные атомы или группы атомов оказываются выбитыми из своих правильных положений, и поэтому структура и свойства облученных материалов необъяснимы без оценки роли дефектов и т. д. В связи с этим важной составной частью физики твердого  [c.228]


В первых исследованиях фрикционного взаимодействия твердых тел контакт последних рассматривался либо как чисто механический, либо как чисто физический. Смазочный материал рассматривался с позиций механики сплошной среды как вязкое тело, способное при определенных условиях полностью разделять контактирующие поверхности, перенося процесс трения в объем среды. Впоследствии были сделаны попытки учесть специфику трения как явления, протекающего на поверхности, в поверхностных слоях твердых тел, резко отличающихся по свойствам от объема данных тел. Кроме того, расширение объема знаний в области физики, химии и механики поверхности привело к пониманию сложности структуры поверхностного слоя, состоящего из дефектного слоя материала твердого тела, образовавшегося в процессе его обработки, пленок окислов, хемосорбированных и адсорбированных слоев из окружающей среды.  [c.28]

Выяснение закономерностей и механизма физико-химических процессов получения различного рода твердых тел, структурированных дисперсных систем и различного рода технических (строительных и конструкционных) материалов с заданными механическими свойствами и структурой.  [c.5]

Установлено, что между типом кристаллической структурь и физико-механическими свойствами твердых тел существует корреляция [38].  [c.10]

Термоакустическая обработка (ТАО) — принципиально новая, базирующаяся т современных достижениях газодинамики, теплофизики, аэроакустики и физики твердого тела, технология направленного изменения структуры и физико-механических свойств металлов и сплавов. ТАО представляет собой организованную определенным образом термообработку в сильном акустическом поле звукового диапазона частот. Обработка включает нагрев обрабатываемых деталей до некоторой температуры с последующим охлаждением в резонаторе газоструйного генератора звука в течение нескольких минут При этом охлаждение металла происходит до минусовых температур в пульсирующем газовом потоке при наличии мощных акустических полей с диапазоном дискретных ч астот 700-2500 Гц и уровнями звукового давления свыше  [c.200]

Частная промышленность также оценила важность научных исследований, что повело к быстрому развертыванию сети заводских и иных промышленных лабораторий. При этом не только возрос общий объем исследований по механике материалов, но изменился и самый их характер. Новые лаборатории облегчили установление контакта между инженерами-исследователями и физиками в их работе, теснее направив их обш ие усилия на освещение основных проблем о связи структуры и механических свойств твердых тел. После открытия Лауэ в 1912 г. интерференции рентгеновых лучей в кристаллах представилось возможным использовать это явление для исследований структуры металлов. Развилась техника изготовления крупных кристаллов, а изучение отдельных монокристаллов внесло большую ясность в наши представления о характере воздействия внешних условий на механические свойства металлов ). Количество научных работников, интересующихся механическими свойствами материалов, увеличилось безгранично возросло и число научных работ, публикуемых по этому вопросу в различных изданиях. Поэтому в настоящем обзоре мы сможем остановиться только на немногих, самых важных работах этого периода.  [c.424]

Как мы видели, трещина в деформируемом теле создает очаг возмущения напряженного состояния, характерный сильной концентрацией напряжений у ее острия. На первый взгляд любая малая трещина благодаря стремлению напряжений к неограниченному росту с приближением к кончику трещины должна была бы породить прогрессирующий процесс разрушения. Однако такой теоретический результат следует из модели идеально упругой сплошной среды и не соответствует реальным физическим свойствам материала. Дискретная структура реального материала и нелинейность механических соотношений для него в сильной степени изменяют картину фиаико-меха-нического состояния, следующую из линейной теории упругости. В результате, как показывает опыт, в одних условиях трещина может устойчиво существовать, не проявляя как-либо себя, а в других — происходит взрывоподобный рост треш ины, приводящий к внезапному разрушению тела. Существуют попытки проанализировать это явление на атомном уровне методами физики твердого тела. Они представляют определенное перспективное направление в этой проблеме, но, к сожалению, до сих пор полученные здесь результаты далеки от уровня прикладных инженерных запросов.  [c.383]

Реологические свойства граничных слоев масел, пластичных смазок и антифрикционных покрытий. В настоящее вре мя установлено неньютоновское поведение граничных слоев жидких Б объеме смазочных масел [15—17 25]. Поэтому следует рассматривать свойства системы жидкость — твердое тело, а не самой жидкости. В полимолекулярных граничных слоях за счет физико-химического взаимодействия с повер.хностью твердого тела (подложкой) возникает квазикристаллнческая структура [17 19 40], степень упорядоченности которой зази-сит от температуры, структуры молекул и расстояния от твердой поверхности. Такой характер строения тонких смазочных слоев позволяет предполагать градиент механических свойств по толщине слоя. Действительно, сопротивление нормальному и тапгищиальному напряжениям в полимолекулярном граничном слое увеличивается с утонением последнего и зависит от состава смазочной жидкости (рис. 9) [16].  [c.102]

Механические свойства П.— колшлекс свойств, определяющих их поведение при действии механических сил. Для П. характерны 1) сильно выраженные релаксационные св-ва, проявляющиеся в запаз-дыва]1ии деформации и релаксации напряжения 2) двойственная природа упругости обычная упругость, характерная для твердых тел, и высокоэластическая 3) влияние мол. ориентации на прочность 4) большая роль физико-химич. процессов в нестабильности механич. св-в (действие агрессивных сред, процессы старения) 5) активирующее влияние механич. сил на химич. процессы в П., приводящее к изменению их структуры и развитию явлений утомления. П., кроме того, обнаруживают два вида необратимой деформации при малых напряжениях молекулярный механизм течения в общих чертах тот же, что и для обычных жидкостей (диффузионный) при больших— наблюдается химическое течение. К основным механич. св-вам П. относятся деформационные, прочностные и фрикционные.  [c.17]


За последние 10—15 лет усилилось внимание к проблемам физики резко неоднородных по составу и структуре границ раздела в металлических системах. Научно-технический прогресс в таких важных областях, как коррозионные явления, вакуумная техника, процессы при трении и смазке и многих других, требует детальных сведений о микроскопической природе поверхности твердого тела и поверхностных явлений. Исследования структуры и свойств поверхностей твердых тел показывают, насколько сложны и разнообразны поверхностные явления. При трении эти поверхности взаимодействуют между собой непосредственно или через смазочную среду поэтому нетрудно представить, насколько многообразны физико-химические процессы в контактной зоне, протекающие на фоне механического взаимодействия поверхностей. Например, решение такой проблемы при трении, как деформируемость материала в тонком поверхностном слое, связанная с дислокационным, диффузионным и самодиффузионным механизмами пластичности в широком интервале температур, скоростей и деформаций, связано с большими экспериментальными и теоретическими трудностями.  [c.3]

Процесс внешнего трения представляет собой сложную совокупность механических, физических и физико-химических явлений. Основные факторы, влияющие на трение и износ фрикционных пар, условно разделяют на три группы технологические (структура, химические, физические и механические свойства) конструктивные (схема контакта, макро- и микрогеометрия поверхностей трения, геометрический фактор Ква конструкция рабочих поверхностей, способ подвода смазки) эксплуатационные (удельная работа трения, относительная скорость скольжения, удельная нагрузка, температурный режим, смазка и ее свойства). В процессе трения под влиянием указанных факторов формируются поверхностные слои твердых тел, 6б усЖ0Нливаюш ие механизм трения и износа и отличающиеся специфическим структурным состоянием. Образующиеся в процессе трения поверхностные слои твердых тел характеризуются повышенной свободной энергией, физической и химической активностью, а также иными механическими свойствами, чем более глубоко лежащие слои, не участвующие в процессе контактирования. Поверхностные слои определяют механизм контактного взаимодействия и уровень разрушения при трении.  [c.26]

Вместе с тем, физико-химическая механика решает проблему получения твердых тел и структурированных систем, а также строительных и конструкционных материалов с заданными. механическими свойствами и структурой и проблему оптималы. ых методов их обработки (давлением, резание.м, измельчением).  [c.24]

Для этой школы характерно развитие новых путей в коллоидной химии — исследование процессов структурообразования в дисцорсных системах и физико-химическое исследование процессов деформации, предразрушения и диспергирования твердых тел в связи с дефектностью их структуры. Разработка этих двух проблем значительно расширила круг явлений, ставших предметом изучения коллоидной науки, привела к перестройке ее основных разделов и создала основу для возникновения новой пограничной области науки — физико-химической механики, ставящей своей задачей получение высококачествешп.тх строительных и конструкционных материалов (деталей машин и строительных деталей) с заданными структурой и механическими свойствами.  [c.37]

Предлагаемая монография посвящена изложению результатов исследований эффекта адсорбционного понижения прочности и облегчения деформации металлов в разных его проявлениях. Этот весьд1а общий эффект влияния физико-химических факторов на механические свойства деформируемых твердых тел заслуживает особого внимания исследователей и производственников, так как позволяет управлять процессами пластической деформации и разрушения, а следовательно, и обработкой твердых тел, в особенности металлов. Совокупность своеобразных физико-химических явлений, объединяемых обхцим понятием адсорбционного понижения прочности, наиболее ярко обнаруживает влияние поверхностной энергии и ее изменений, на поведение деформируемого твердого тела в связи с особенностями его реальной структуры, характеризующейся разнообразными дефектами.  [c.3]


Смотреть страницы где упоминается термин СТРУКТУРА И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ : [c.60]    [c.72]    [c.30]    [c.159]   
Смотреть главы в:

Физические основы конструирования и технологии РЭА и ЭВА  -> СТРУКТУРА И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ



ПОИСК



59-1-Механические Физико-механические свойства

Свойства с а-структурой

Структура твердых тел

Твердые Механические свойства

Физико-механические свойств

Физико-механические свойства свойства



© 2025 Mash-xxl.info Реклама на сайте