Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электронная структура и периодическая система элементов

Все свойства металлов, как и других элементов, прежде всего определяются порядковым номером в Периодической системе элементов Д. И. Менделеева, т. е. числом электронов в атоме и их строением, определяющим кристаллическую структуру, физические, химические и, механические свойства. Последние зависят прежде всего от температуры.  [c.190]

Алюминий — элемент III группы Периодической системы элементов Д. И, Менделеева и его электронная структура s 2s 2p 3s 3p — самый распространенный в природе металл, содержание его в земной коре 8,8 %, Это серебристо-белый металл, его элементарная кристаллическая решетка—куб с центрированными гранями. Твердость по минералогической шкале 2,75, Алюминий имеет следующие физико-химические свойства атомную массу 26,98 плотность при 293 К 2,7 г/см валентности 1, 2 и 3 температуру плавления 933 К и кипения 2773 К. С же-  [c.100]


Марганец — металл серебристого цвета. Это переходный элемент седьмой побочной подгруппы Периодической системы элементов Д. И. Менделеева с электронной структурой s 2s 2p 2 s ip Zd As . Марганец имеет следующие физико-химические свойства  [c.143]

Пока не существует полной классификации многочисленных и разнообразных промежуточных фаз. Замечено, что структура промежуточной фазы зависит от трех факторов относительного размера атомов, их валентности и от положения в Периодической системе элементов, что определяет их электронную структуру.  [c.28]

Кристаллическое строение металлов определяется их электронной структурой и, следовательно, связано с положением металлов в периодической системе элементов. Процессы трения и изнашивания зависят, таким образом, и от электронного строения металлов. По мнению авторов [95], условием интенсивного схватывания и, следовательно, интенсивного износа при трении является обмен электронами атомов металлов трущейся пары с образованием стабильных в энергетическом отношении электронных конфигураций. При исследовании ряда переходных металлов, обладающих различной степенью заполненности недостроенных -оболочек, показана взаимосвязь фрикционных характеристик и конфигураций -уровня.  [c.43]

Селен, теллур и полоний являются представителями шестой группы периодической системы элементов. Селен и теллур по своим свойствам несколько отличаются от полония. Сравнительно недавно физикам удалось показать, что ряд элементов в чистом виде является типичными полупроводниками. В табл. 8 полужирной рамкой выделены те элементы периодической системы, которые обнаруживают полупроводниковые свойства [1]. Справа от каждого элемента указана ширина запрещенной зоны, характеризующая электрические свойства полупроводника, слева — значение электроотрицательности, т. е. сила притяжения электронов в ковалентной связи. Из этих данных видно, что между указанными величинами имеется определенная корреляция. Закономерное изменение этих величин по вертикали и горизонтали свидетельствует о тесной связи между электрическими свойствами элементов и электронной структурой их атомов. Металлическая проводимость возрастает сверху вниз и справа налево, а изоляционные свойства— слева направо и снизу вверх. Теллур нри низких температурах является типичным полупроводником полупроводниковые свойства селена проявляются в громадном увеличении электропроводности под действием света (фотопроводимость) полоний к полупроводниковому классу веществ не относится.  [c.78]


Полупроводниковые кристаллические соединения типа А " В представляют собой химические соединения, образующиеся при взаимодействии элементов В и В подгрупп периодической системы элементов Менделеева. Эти соединения характеризуются наличием у А на внешних оболочках по 3 валентных электрона в состоянии а у В по 5 электронов в состоянии и, вследствие этого, в химических соединениях А В на каждый атом приходится такое же, как и в элементах IV группы, количество электронов, а отсюда идентичность в кристаллической структуре и электронных свойствах этих соединений с алмазом, кремнием, германием и другими элементами IV группы. Однако в отличие от элементов IV группы, имеющих в кристаллической структуре только гомеополярные связи, соединения типа А В имеют как гомеополярные,  [c.249]

Из металловедения хорошо известно, что кристаллические интерметаллические соединения с ковалентными и ионными связями имеют тенденцию образовываться, если по меньшей мере один из элементов принадлежит к группе IVB или к более дальним группам периодической системы элементов ([137], гл. 4). Это следует из химического принципа, согласно которому предпочтительно образуются такие соединения, в которых один из элементов имеет почти заполненную оболочку валентных электронов. Очевидно, что химические составы жидких полупроводников согласуются с этим принципом. Теория химических связей полупроводниковых соединений Мозера и Пирсона [178] представляет собой более детальное изложение указанного принципа. Основное отличие жидких полупроводников состоит в том, что в жидкой фазе может существовать больше различных молекулярных структур, чем в кристалле, поэтому ограничения стехиометрии, соответствующие правилам Мозера и Пирсона, в этом случае не могут применяться строго.  [c.49]

В каждом из трех рядов периодической системы элементов между щелочноземельными (кальций, стронций и барий) и благородными металлами (медь, серебро и золото) содержится по девяти переходных элементов. В этих элементах происходит постепенное заполнение -оболочки, пустой в щелочноземельных металлах и целиком заполненной в благородных металлах. В стабильной форме при комнатной температуре переходные элементы обладают моноатомны-ми г. ц. к. или о. ц. к. шетками Бравэ либо г. п. у. структурой. Все они — металлы, но в отличие от уже обсуждавшихся (благородных и так называемых простых ) металлов на их свойства существенно влияют -электроны.  [c.306]

В первоначальном варианте таблицы Д. И. Менделеева элементы располагались в порядке возрастания атомных масс и группировались по сходству химических свойств. Объяснение периодическому закону и структуре периодической системы в дальнейшем было дано на основе, квантовой теории строения атома. Оказалось, что последовательность расположения элементов в таблице определяется зарядом ядра, а периодичность физико-химических свойств связана с существованием электронных оболочек атома, постепенно заполняющихся с возрастанием 2.  [c.1231]

Исходя из положения элементов в Периодической системе и различия в их физико-химических характеристиках и электронной структуре атомов, можно полагать, что s и Ti практически не должны взаимодействовать друг с другом. В работе [1] рассчитали энтальпию возможного взаимодействия жидкого s с жидким Ti, которая оказалась равной 280 кДж/мать. На рис. 125 приведен вариант диаграммы состояния s—Ti [2]. Взаимодействие между s и aTi практически полностью отсутствует.  [c.229]

Диаграмма состояния Dy-Pm экспериментально не построена. Dy и Pm достаточно близко расположены в Периодической системе в ряду лантаноидов и имеют идентичное электронное строение с тремя коллективизированными валентными электронами 5(1 bs , сходные кристаллические плотные гексагональные структуры и одинаковые кубические структуры высоко- и низкотемпературных модификаций этих элементов с близкими значениями параметров решеток и атомными радиусами, отличающимися всего на 2,1 %. Согласно работам [1, М] можно предположить образование непрерывных рядов твердых растворов, почти идеальных при высоких температурах.  [c.389]


Экспериментальные данные о диаграмме состояния Tb-Tm отсутствуют. Тербий и тулий, близко расположенные в периодической системе, имеют идентичное электронное строение с тремя валентными электронами 5 6 и одинаковую плотную гексагональную структуру типа Mg с близкими постоянными решетки и атомными радиусами, отличающимися всего на 2,1 %. Можно полагать, что эти элементы образуют между собой непрерывные ряды твердых растворов с ГПУ структурой (рис. 634). Вследствие близости строения растворы должны быть близки к идеальным. Поэтому линии ликвидуса и солидуса практически сливаются в одну общую прямую с очень узкой двухфазной областью между ними. Диаграмма состояния Tb-Tm относится к перитектическому типу. Тулий в отличие от большинства лантанидов не имеет полиморфного превращения при высоких температурах вблизи температуры плавления [1, М], но испытывает аналогичное изменение ближнего порядка в жидком состоянии при 1655 С [2]. Вследствие идеальности растворов линии ликвидуса и сольвуса также сливаются в одну общую прямую. Перитектическая точка отвечает 1430 С и 37 % (ат.) Тт. Сплавы, содержащие более 37 % (ат.) Тт плавятся, сохраняя ближний порядок, соответствующий их структуре перед плавлением. При нагреве до температур, отмеченных штриховой линией на рис. 496, расплавы испытывают превращение ближнего порядка Ж0щ - Жр у.  [c.367]

Кристаллическая структура металлов и сплавов может быть в известной мере объяснена на основании оценки величины электронной концентрации (числа валентных электронов, отнесенных к числу атомов, образующих структуру). На это, в частности, обратил внимание Юм-Розери [12], который отметил, что большая часть структур в подгруппах В следует правилу 8 — N, когда каждый атом имеет 8 — N ближайших соседей М — номер группы). Эти представления были развиты Энгелем [13]. Он предположил, что металлические решетки г. д. к., г. п. у., о. ц. к. возникают при наличии 3, 2 и 1 наружных связывающих электронов (5, р). Эмпирически было замечено, что для устойчивости о. ц. к. решетки необходимо иметь 1—1,75 электрона на атом, г. п. у. решетки 1,75—2,25, г. д. к. 2,25—3. При дальнейшем увеличении числа электронов (до четырех) возникает решетка алмаза. Важно подчеркнуть, что, согласно Энгелю, структуру определяют 5- и /7-электроны, но не -электроны, хотя от последних существенно зависит величина энергии связи. Эта точка зрения получила довольно. широкое распространение [5], и мы рассмотрим, исходя из нее, структуру различных элементов периодической системы.  [c.39]

Например, несмотря на то, что межатомные расстояния в у-и а-железе при 916° С существенно различны, значения Го очень мало отличаются друг от друга (1,425 и 1,430 А соответственно). Представление об атомном объеме 2 имеет дополнительное преимущество, поскольку этот объем без особой сложности можно определить для любой структуры путем деления объема элементарной ячейки на число составляющих ее атомов. Он служит также основным параметром при описании металлической связи в приближении свободных электронов (см. уравнение (3), а также статью Мотта [4]). Значения й и Го для элементов периодической системы приведены в табл. 4, и, кроме того, на фиг. 9 представлена зависимость Го от номера подгруппы периодической таблицы. Совершенно очевидно, что периодическое изменение атомных радиусов, представленное на этом графике, следует закономерности, очень близкой к установленной для сжимаемости (см. фиг. 8). Значения этих величин, а также значения температур плавления, представленные на фиг. 7, рассматриваются ниже для различных частей периодической таблицы Менделеева.  [c.47]

ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ — совокупность атомов с одинаковым зарядом атомных ядер. Все Э. х. имеют изотопы. К 1965 г. открыто в природе и получено искусственно 104 Э. х. Естественную систематику Э. X. на основе электронной структуры их атомов дает периодическая система химических элементов Д, И, Менделеева, Свойства отдельных Э, х. описаны в статьях о них.  [c.528]

Алмаз может служить типичным примером кристаллической структуры, образуемой элементами IV группы периодической системы углеродом, кремнием, германием и (серым) оловом (см табл. 4.3). Все эти элементы в кристаллическом состоянии имеют тетраэдрально координированную структуру алмаза. По терминологии химиков, каждый атом участвует в четырех ковалентных связях, деля свой электрон с четырьмя соседними атомами. Хотя происхождение связей в конечном счете остается электростатическим, причины, по которым кристалл оказывается связанным в одно целое, теперь значительно более сложны — мы не можем уже пользоваться простой моделью противоположно заряженных бильярдных шаров , которая так хорошо описывает ионные кристаллы. Этого вопроса мы еще коснемся в гл. 20.  [c.21]

В данной книге излагаются электронно-квантовые основы периодической системы элементов теория химической связи и структура молекул, электрические свойства молекул и методы расчета дипольных моментов зависимость электрических и других свойств от химического состава и структуры мшекул, от внешних факторов (электрическое поле, радиационное излучение, температура, влажность, давление и др.).  [c.3]

Если электрон выбит из К-оболоч-ки (и = 1), то при переходе на освободившееся место электронов с других оболочек излучается рентгеновская К-серия. При переходе электронов на освободившееся место в L-оболочке ( = 2) излучается L-серия и т.д. Таким образом, экспериментально наблюдаемая одинаковость структуры рентгеновских спектров и закон Мозли подтверждают представления, употребляемые при интерпретации периодической системы элементов.  [c.294]

Для рассматриваемых систем общим является наличие в ограничивающих системах (Мо, W) — С высокотемпературных кубических карбидов с решеткой типа Na l, претерпевающих при охлаждении быстропротекающие превращения, которые удается предотвратить только при экстремальных условиях закалки [17]. Добавки третьего компонента по-разному влияют на устойчивость этих высокотемпературных фаз. Оказалось, что интенсивность стабилизирующего действия на них легирующих добавок определяется темпом снижения числа валентных электронов на формальную единицу (ВЭК) при замещении молибдена и вольфрама легирующим металлом и возрастает в ряду W, V, Nb, Та, Ti, Zr, Hf. Этот результат является закономерным. На основании результатов рентгеноспектральных исследований, расчета полосовой структуры и анализа физико-химических свойств фаз внедрения со структурой типа Na l (в том числе для карбидов переходных металлов П1—V групп периодической системы элементов) был сделан вывод [6, 8, 113,  [c.164]


В. атома связана с ого электронной структурой, а следовательно, и с его положением в периодической системе элементов, т. к., отдавая или нрисоединяя электроны, атом стремится иметь заполненную, наиб, устойчивую внеш. электронную оболочку. Так, макс. В. атома С, имеющего во внешней (валентной) оболочке  [c.238]

Электронное строение и типы связей элементов периодической системы - ключ к пониманию структуры и свойств простых и сложных веществ, образованных этими элементами Два или более атомов располагаются друг около друга так, как это энергетически выгодно. Это справедливо независимо от того, сильно или слабо связана группа атомов, содержит эта фуппа лишь несколько или 10 атомов, является расположение атомов упорядоченным (как в кристалле) или неупорядоченным (как в жидкости). Группа атомов устойчива тогда и только тогда, когда энергия атомов, расположенных вместе, ниже, чем у отдельных атомов. Единственной физической причиной конкретной кристаллической структуры любого элемента и его модификаций является перекрытие валентных и подвалентных оболочек его атомов, приводящее к образованшо определенных межатомных связей. Число протяженность и симметрия орбиталей атомов данного конкретного элемента полностью определяют число, длин , ориентиров и энергию межатомных связей, образующихся в результате перекрытия этих орбита-лей, а следовательно, размещение атомов в гфостранстве, т е. кристал-лическ то структуру, основные физико-химические свойства элемента.  [c.30]

Диаграмма состояния Pm-Pr экспериментально не построена. Однако Pm и Рг в Периодической системе элементов расположены рядом. В металлическом состоянии металлы имеют идентичное электронное строение с тремя внешними коллективизированными электронами 5йРбД одинаковые кристаллические структуры с близкими постоянными решетки, атомные радиусы, отличающиеся всего лишь на 0,9 %.  [c.5]

Хром (от греческого слова hroma — цвет) переходный элемент VI группы Периодической системы элементов Д. И. Менделеева, имеет электронную структуру 2р 3s Зр 3fi 4s. Твердость по мине-  [c.198]

На рис 29 в последовательности, отвечающей положе нию металлов в периодической системе элементов, приведены обобщенные данные о кристаллической структуре и электронном строении d и s оболочек переходных металлов, используемых для легирования сталей, а также сведения о кристаллической структуре и стехиометриЧгеской фор-  [c.56]

Шуман провел классификацию переходных Ы-, Ad- и 5 -элементов периодической системы элементов по их способности образовывать те или иные кристаллические структуры [52] и предложил гипотезу, согласно которой е-фаза должна образовываться как термодинамически устойчивая фаза при легировании железа элементами с числом внешних электронов 7—9 и атомным радиусом, превосходящим атомный радиус железа, но не более 10%. При этом в областях, окружающих легирующий элемент, должны возникать высокие сжимающие напряжения, приблизительно 1000—1500 МПа на 1% (ат.) легирующего элемента, что и обеспечивает компактное построение ГПУ структуры [52, 53]. Однако эта гипотеза не объясняет возможности существования е-фазы в концентрационном интервале (15—25% Мп). Кроме того, среди переходных 4й-элемен-тов марганец имеет аномально больщой атомный радиус и несколько нарушает закономерность, установленную Шуманом для элементов 5 и 6-го периодов, однако, в сплаве с железом марганец относится к группе элементов, стабилизирующих е-фазу при нормальном давлении [53].  [c.36]

Марганец расположен в Периодической системе элементов Д. И. Менделеева в том же большом периоде, где находятся ферромагнитные элементы железо, кобальт и никель, т. е. входят в число переходных металлов 4-го периода VII группы. Электронное строение оболочек изолированных атомов ЗФ 4s . Хотя марганец сам по себе не ферромагнитен, но его соединения и некоторые сплавы ферромагнитны. Причина ферромагнетизма в недостроенности внутренних электронных Зс1-оболочек (Зс1-металлы). Сложность структуры внешних электронных оболочек, близость энергетических уровней вызывают неустойчивость в распределении электронов между подгруппами и обусловливает сложность электронных спектров, полиморфизм и магнетизм переходных элементов [2].  [c.71]

Периодическая система элементов является, как известно, физикохимической основой создания сплавов, новых веществ, наноматериалов и синтеза новых атомов. Неслучайно поэтому в настоящее время к Периодическому закону Менделеева изменения структуры и свойств атомов в зависимости от их массы приковано внимание физиков и химиков всего мира. На международной конференции по ядерной физике Ядроядерные столкновения - 2003 (N N- ollision 2003), прошедшей в Москве, обсуждались и такие вопросы как возникнет ли нарушение строгой периодичности структуры и свойств атомов при создании сверхтяжелых ядер из-за возможного проявления релятивистских эффектов и каков порог массы атома, при достижении которого может нарушиться Периодический закон И, наконец, есть ли разница между атомами, созданными природой, живущими миллионы лет, и синтезированными ядрами атомов, которые живут 10-14 с, а затем обрастают электронами [26] Ответы на эти вопросы волнуют не только физиков и химиков, но и специалистов, занимающихся синтезом новых веществ и материалов. Это направление стало особенно актуальным в связи с развитием наноматериаловедения и нанотехнологий, возникших на стыке физики, химии, материаловедения и биологии.  [c.73]

Электронные оболочки всех ионов простого ионного кристалла соответствуют электронным оболочкам, характерным для атомов инертных газов. Согласно периодической системе элементов (см. таблицу на стр. 768) нейтральные атомы лития и фтора имеют следующую структуру электронной оболоч-  [c.126]

В лазерах и СИД используются элементы III и V групп Периодической системы элементов. Эти элементы имеют соответственно три и пять электронов в своих валентных зонах. При комбинации равного количества атомов с тремя и пятью электронами получается структура, близкая к структуре кремния. При этом атомы будут образовывать ковалентную связь, характеризующуюся заполненными валентными оболочками атомов. Никаких свободных носителей заряда присутствовать не будет. Для создания полупроводника п-типа комбинируются вещества V группы в большей пропорции с веществами III rpynnbL В этом случае в структуре появляются свободные носители заряда в виде электронов. Аналогично увеличение пропорции веществ III группы приводит к появлению носителей заряда в виде дьфок. На рис. 8.4 представлены три ситуации на примере арсенида галлия. Атом галлия имеет три валентных электрона атом арсения имеет  [c.101]

Перед инертными газами располагаются галогены (элементы VII группы периодической системы со значением первого ионизационного потенциала от 10 до 18 эВ) —F, С1, Вг, J, у которых не хватает одного электрона для образования устойчивых электронных оболочек ближайших к ним атомов инертных газов, поэтому они легко присоединяют к себе электрон, образуя соответствующие отрицательные ионы — анионы F , С1 , Вг- J-. Энергию Э, освобождаюш,уюся при присоединении электрона к нейтральному невозбужденному атому с образованием аниона, называют энергией сродства атома к электрону. Наибольшим сродством к электрону обладают атомы галоидов F — 3,4 эВ, С1 — 3,6 эВ, Вг — 3,4 эВ, J — 3,1 эВ. С понятиями потенциала ионизации и энергии сродства к электрону тесно связана ионная валентность, определяемая как число электронов, которое может терять или приобретать атом. Щелочные металлы положительно одновалентны, поскольку они содержат на один электрон больше, чем атомы соответствующих ближайших инертных элементов, например ионная валентность атома Na равна -f 1. Атомы галоидов отрицательно одновалентны, у них не хватает одного электрона для образования устойчивой оболочки ближайших атомов инертных газов. Так, для атома С1 ионная валентность равна —1. Аналогично атомы II группы, теряя два электрона, могут также образовывать ионы с электронной структурой ближайших атомов инертных газов Be +, Mg-+, Са2+, Sf2+, и, следовательно, эти атомы обладают положительной валентностью, равной +2 атомы III группы, теряя три электрона, могут образовывать ионы с валентностью +3 и т. д.  [c.57]


Исходя из положения элементов в Периодической системе и различия в их физико-химических характеристиках и электронной структуре атомов, можно полагать, что s и V практически и, должны взаимодействовать друг с другом. В работе [I] рассчита - и энтальпию возможного взаимодействия жидких s и V, которая оказалась равной 269 кДж/моль. На рис. 127 приведен вариант диаграммы состояния s—V, заимствованный из справочника [М]. Взаи модействие между s и V в твердом состоянии практически отсутствует.  [c.232]

Сходство конфигураций внешних электронных оболочек в атомах платиновых металлов и близость эффективных атомных радиусов обусловливают близость хи.мическнх свойств элементов. Наибольшие ана-логи[1 проявляются у элементов, стоящих в периодической системе друг под другом у рутения и осмия, родия и иридия, палладия и платины. У элементов же, стоящих рядом по горизонтали, проявляются заметные различия а свойствах. Вследствие сходства структур последнего электронного уровня наблюдается сходство свойств некоторых однотипных соединений элементов, расположенных по диагонали рутения п иридия, родия и платины.  [c.369]

Кажется, что возможность нахождения асимметричного максимума в элементах из более высоких групп и низких периодов Периодической системы выше в этих элементах связь в твердом состоянии преимущественно неметаллическая [47]. Все это наводит на мысль, что такое поведение связано с сохранением в жидком состоянии определенной доли ковалентной или гомеополярной связи. Эта связь, возможно, присутствует в виде кратковременной локализации валентных электронов в связанном состоянии между парами или группами соседних атомов, возможно, в процессе резонансной гибридизации как рассматривалось Полингом [48]. Получающаяся в результате этого структура становится устойчивее за счет относительной стабильности и направленности неполярной связи. Эта преимущественно ковалентно связанная структура может существовать небольшими комплексами или островками в металлически связанной матрице . Если это так, то пространственное расположение атомов в пределах самих комплексов, возможно, будет одинаково, но совершенно отлично от более неупорядоченного расположения атомов в металлической матрице (к сожалению, невозможно определить пространственное расположение атохмов из данных по рентгеновскому рассеянию).  [c.22]

Рассмотренные выше методы измерения скорости роста усталостной трещины и шага усталостных бороздок приводят к погрешностям метрологического характера, связанным с ручной системой измерений шага и субъективным элементом, вносимым при обработке результатов эксперимента. В связи с этим была предпринята попытка разработать методику автоматизированного поиска фракталей (бороздок) с использованием растрового электронного микроскопа (путем автоматического анализа периодичности и частоты структур) и вычислительной техники. Процесс разрушения материала сопровождается формированием в изломе периодической структуры в виде усталостных бороздок, а также растрескиваний микронного и субмикрон-ного размера. Фактически параметры структуры поверхности разрушения изменяются в пределах двух и более порядков. Поэтому для исследования такого рода структур поверхности в растровом электронном микроскопе (РЭМ) целесообразно иметь оптимальный размер объекта с усталостными бороздками, где качественно может быть оценено сравнительно устойчивое значение шага усталостных бороздок при достаточном для осреднения их количестве. Очень важно, чтобы наблюдаемый рельеф поверхности имел j bpo-шую контрастность изображения. В этом случае значимость получаемого различия в сигналах от падающего пучка электронов в местах выступов и впадин становится наиболее существенной, что удобно для анализа информации.  [c.234]

У элементов В-подгрупп, располагающихся вслед за благородными металлами в соответствующих горизонтальных рядах периодической системы, с -под обол очки в свободных атомах целиком заполнены электронами. В связи с этим долгое время сдиталя, что при образовании сплавов происходит коллективизация толькц 5- и р-электронов, на самом же деле возможность перехода электро-нав из d-зоны в зону проводимости и (s — й)-гибридизация делают ситуацию более сложной. Нет сомнения в том, что наличие электронов d-зоны в сплавах благородных металлов вблизи уровня Ферми и изменение энергии электронов с -зьны при образовании сплава оказывают существенное влияние на его электронную структуру. Это влияние изучено пока еще недостаточно, и для получения более ясной картины необходимо проведение дальнейших исследований ). Даже если допустить, что влиянием d-зоны можно пренебречь и что каждый из элементов имеет вполне определенную валентность (например, у меди валентность равна 1, у цинка —  [c.155]

К группе редкоземельных элементов (РЗЭ) относится семейство из 14 элементов с порядковыми номерами от 53 (церий) до 71 (лютеций), расположенных в VI периоде системы Д. И. Менделеева за лантаном и сходных с ним по свойствам. Поэтому обычно в эту группу включают и лантан, а элементы называют лантаниды (т. е. подобные лантану). Кроме того, к лантанидам примыкают химические аналоги лантана — элементы третьей группы скандий и иттрий, которые, особенно иттрий, почти всегда содержатся вместе с редкоземельными элементами в минеральном сырье, В периодической системе лантаниды помещают обычно отдельно, внизу таблицы (гм. тябл 1). По физико-химическим свойствам лантаниды весьма сходны между собой. Это объясняется особенностями строения их электронных оболочек. Как известно, химические и многие физические свойства элементов определяются преимущественно строением внешних электронных уровней. Между тем по мере роста заряда ядра (увеличения порядкового номера) структура двух внещних уровней (оболочки О Р) у атомов лантанидов одинакова, так как при переходе от одного элемента к другому заполняется электронами глубоко лежащий электронный уровень 4/ (табл. 43). Максимально возможное число электронов на /-уровне, равное 14, определяет число элементов семейства лантанидов.  [c.322]

Свинец и олово — элементы IV группы Периодической системы. Электронная структура атотлов их во внешней оболочке одинакова— оба имеют по два - и р-электрона. Атом свинца крупнее и у него стремление отдать электроны сильнее выражено, чем у олова — он более металличен. В связи с этим устойчивее производные РЬ (II), в большинстве солеобразные, а соединения РЬ (IV)—сильные окислители. Напротив, четырехвалентное олово более стойко, а двухвалентное — энергичный восстановитель. В металлургии эти металлы объединяет легкоплавкость и малое сродство к кислороду, а также сходство способов получения и рафинирования, несмотря на различие в сырье.  [c.232]

Г рупгга О (VIIIA) (инертные газы). Атомы инертных газов, имеющих законченные внешние электронные оболочки, притягиваются друг к другу лишь слабыми ван-дер-ваальсовыми силами, возникающими в результате смещения электронов при сближении атомов. Решетки их, благодаря сферической симметрии электрических полей так же, как и у большинства металлов, плотноупакованные, а именно плотноупа-кованная гексагональная у гелия и гранецентрированная кубическая у остальных инертных газов. Слабая молекулярная связь между атомами объясняет очень малую прочность решеток. Кристаллическая структура элементов по группам периодической системы представлена в табл. 4.  [c.267]

Рассмотрим далее молекулярную структуру при нестехиомет-рических составах. В случае Т1—Те было обнаружено, что ожидаемое электронное поведение сушественно различно в зависимости от того, образует ли избыточный элемент химические связи (Т1гТе+Те) или нет (T Te-fTl). Сильная ионная связь М—А не запрещает ковалентного связывания избыточных атомов А. Например, кажется возможным, что в сплавах Na—Те могут существовать цепные молекулы ионов (Te ) - в области составов, богатых Те. Лучшим аргументом в пользу такого поведения служит способность избыточного элемента образовывать ковалентные связи с самим собой. Это наводит на мысль, что элементы групп IVB, VB и VIB периодической системы, особенно более легкие, могут связываться ковалентно, когда отклонения от стехиометрии происходят за счет их избытка. Тяжелые элементы из групп IV и V, такие как Sn или Bi, по-вндимому, действуют подобно элементам групп И и III и вступают в металлическую связь, когда находятся в избытке. С другой стороны, электронное поведение сплавов As Se, обсуждаемое в 8, приводит к представлению о ковалентном типе связи As и Se, когда они находятся в избытке по сравнению с составом As2Se3 [138, 139]. Аналогично электрические свойства многих сплавов Те и Se указывают на ковалентное связывание избыточного халькогена.  [c.182]


Смотреть страницы где упоминается термин Электронная структура и периодическая система элементов : [c.156]    [c.45]    [c.109]    [c.9]    [c.108]    [c.1232]    [c.112]    [c.143]   
Смотреть главы в:

Физическое металловедение Вып I  -> Электронная структура и периодическая система элементов



ПОИСК



Место РЗЭ в периодической системе элементов и их электронная структура

Периодическая система

Периодическая система элементов

Структура периодическая

Структура периодической системы

Структура системы

Структура элементов,

Электронная структура

Электронные системы



© 2025 Mash-xxl.info Реклама на сайте