Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение уравнений прямого и непрямого МГЭ

Решение уравнений прямого и непрямого МГЭ  [c.252]

Уравнение (10.71) можно использовать для получения обычным способом соотношений прямого и непрямого МГЭ. Численному решению (10.71) уделяется значительное внимание в литературе, и читатель может ознакомиться с подробностями в прекрасных статьях [5, 13, 14, 17, 18].  [c.298]

Само по себе граничное интегральное уравнение является формулировкой поставленной задачи, ведущей к точному ее решению, и погрешности вследствие дискретизации и численных аппроксимаций возникают только на границах и рядом с ними из-за невозможности выполнить численное интегрирование в замкнутой форме. Если процедура численного интегрирования сделана достаточно сложной (при использовании, например, криволинейных граничных элементов и непрерывно изменяющихся распределений функций на границе), то привносимые таким образом погрешности могут быть действительно очень малыми. Конечно же, численное интегрирование всегда представляет собой более устойчивый и точный процесс, чем численное дифференцирование, и ни прямой, ни непрямой МГЭ не требуют никакого дифференцирования численных величин.  [c.19]


Если для формулировки алгоритма непрямого МГЭ нам достаточно было воспользоваться простыми физическими соображениями и приемом введения фиктивной системы в неограниченной области, то прямой метод требует более изощренного подхода, который оказывается тесно связанным с использованием интегральных тождеств [7], например второй формулы Грина — уравнение (2.20) и теоремы взаимности Бетти — уравнение (2.30). Тем не менее в обоих методах для определения компонент матричных ядер в окончательных системах уравнений используются те же самые фундаментальные решения для неограниченной области.  [c.50]

Различия в вариантах МГЭ проявляются прежде всего в приемах вывода соответствующих граничных интегральных уравнений и отчасти в способах обработки результатов их решения. Техника же разбиения границ, аппроксимаций, подсчета коэффициентов, решения уравнений, коль скоро они получены, расчетов для внутренних точек остается одной и той же. Поэтому структура и многие элементы программ, реализующих любой вариант, одинаковы и развитие вычислительной стороны осуществляется для метода граничных элементов в целом. Это отчетливо показано в данной книге, и авторы настойчиво добиваются, чтобы читатель ощутил единый модульный характер вычислительных программ и значительную общность модулей. Сравнивая достоинства вариантов, можно все же отметить, что прямой метод, включая и вариант разрывных смещений в прямой его трактовке, очень привлекателен для механиков и инженеров своей главной чертой — тем, что в нем неизвестные функции являются физически осязаемыми величинами. Это немаловажное достоинство становится особенно ценным в случаях, когда достаточно знать лишь значения усилий и смещений на границе, когда необходимо учесть дополнительные соотношения в угловых и других особых точках, а также в контактных задачах, подобных рассмотренным в 8.2, 8.4, при произвольных условиях, связывающих усилия с взаимными смещениями в соприкасающихся точках границ. С другой стороны, в непрямых вариантах несколько сокращаются вычисления на заключительном этапе — при нахождении напряжений, деформаций и смещений во внутренних точках области по найденному решению ГИУ.  [c.274]

Выше мы стремились обратить особое внимание на двухточечную природу введенных сингулярных решений и, несмотря на то что некоторые уравнения выглядели в связи с этим довольно громоздко, настаивали на различении ролей каждого из двух аргументов в обеих процедурах непрямого и прямого МГЭ. После того как важность упорядочения аргументов становится до конца понятной, можно воспользоваться очень простой и компактной матричной формой записи дискретизированных интегральных уравнений.  [c.98]


В работе получены интегральные уравнения метода компенсирующих нагрузок и результаты решения задач изгиба ортотроп-ных и многосвязных пластин разработаны алгоритмы решения МГЭ задач изгиба пластин сложной формы, дано развитие методики определения предельных значений потенциалов для задач изгиба и плоского напряженного состояния пластины предложен способ вычисления расходящегося интеграла с особенностью типа при г->0, предложены итерационные процессы решения прямым и непрямым МГЭ линейнь(х и нелинейных задач теории пологих оболочек, основанные на применении фундаментальных решений задач изгиба и растяжения пластины постоянной толщи-  [c.4]

В принципе эти методы могут быть применены к любой задаче, для которой дифференциальное уравнение или линейно, или линейно относительно приращений [44—49]. В задачах, сводящихся к эллиптическим дифференциальным уравнениям, решения получаются сразу, в то время как для параболических и гиперболических систем уравнений должны быть введены процессы продвижения во времени. Таким образом, охватывается очень широкий класс физических задач при помощи прямых или непрямых формулировок МГЭ могут быть решены, например, задачи об установившемся и неустановившемся потенциальных течениях, задачи статической и динамической теории упругости, упругопластичности, акустики и т. д. [8—49]. МГЭ может также быть использован в сочетании с другими численными методами [44], такими, как методы конечных элементов или конечных разностей, т. е. в смешанных формулировках. Соответствующие комбинированные решения почти неограниченно расширяют область применения методов, ибо МГЭ обладает четко выраженными преимуществами для областей больших размеров, в то время как методы конечных элементов являются удобным средством включения в такие системы объектов конечного размера или уточнения поведения решения в зонах быстрого изменения свойств. Более подробное сравнение особенностей этих методов будет дано в следующем параграфе.  [c.16]

В прямом варианте МГЭ используются точно те же фундаментальные решения исходных дифференциальных уравнений, что и в прямом методе. И используются они совершенно аналогично, только само решение выписывается непосредственно в физических переменных задачи (фиктивные распределения потенциалов, сил и т. п. здесь не вводятся). Приятным обстоятельством при этом является то, что неизвестные граничные значения прямым МГЭ получаются непосредственно в процессе решения, однако построение решения во внутренних точках становится бэлее трудоемким, чем при использовании непрямого метода.  [c.40]

Введенные выше потенциалы простого слоя, двойного слоя и их производные, как показано в 1, удовлетворяют тождественно дифференциальным уравнениям теории упругости внутри тела при отсутствии объемных сил. Частное решение, соответствующее действию объемных сил, выражается объемным потенциалом с плотностью, равной объемной силе. В связи с этим решение тон или иной краевой задачи теории упругости можно попытаться искать в виде суммы одного или нескольких граничных потенциалов и объемного потенциала. Плотности граничных потенциалов должны содержать достаточно неизвестных, чтобы можно было удовлетворить граничные условия. Для нахождения этих неизвестных строятся интегральные уравнения на границе тела —граничные интегральные уравнения (ГИУ). Если при заданных краевых условиях доказано существование решения построенного интегрального уравнения, то тем самым обоснована использованная формула представления решения. Вопрос обоснования формулы представления решения не возникает, если в качестве ее используется формула Сомильяны, справедливая дл любого регулярного, т. е. принадлежащего классу ( (Q) n (Q)) , поля перемещений, а также для более общих классов перемещений, для которых имеет место формула Бетти. Поскольку плотности потенциалов простого и двойного слоя, входящих в формулу Сомильяны, имеют прямой физический смысл, то соответствующую формулировку метода граничных элементов (МГЭ) называют прямой формулировкой МГЭ. В противоположность этому формулировку МГЭ, использующую другие формулы представления, называют непрямой формулировкой МГЭ.  [c.62]



Смотреть страницы где упоминается термин Решение уравнений прямого и непрямого МГЭ : [c.53]   
Смотреть главы в:

Методы граничных элементов в прикладных науках  -> Решение уравнений прямого и непрямого МГЭ



ПОИСК



Прямая Уравнения



© 2025 Mash-xxl.info Реклама на сайте