Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение предельной нагрузки при изгибе

ОПРЕДЕЛЕНИЕ ПРЕДЕЛЬНОЙ НАГРУЗКИ ПРИ ИЗГИБЕ  [c.334]

Определение предельной нагрузки при изгибе полосы с нецентрально расположенной трещиной // Изв. АН СССР, ОТН, Механика и машиностроение. 1963. №2.  [c.431]

Если вместо условия пластичности Хубера — Мизеса использовать условие пластичности Треска — Сен-Венана, что равносильно замене эллипса в координатах главных напряжений (или изгибающих моментов) вписанным в него шестиугольником (рис. 81, е), то решение задач об определении предельных нагрузок при изгибе круглых и кольцевых пластин значительно упрощается. Предельные нагрузки для круглых и кольцевых пластин лри разных случаях осесимметричного нагружения приведены в табл. 15 [13].  [c.219]


Для определения предельной нагрузки необходимо установить возможные варианты схем предельного равновесия. Затем для каждого из них найти значение предельной нагрузки Р р. Действительным значением предельной нагрузки всегда является меньшее из подсчитанных для различных возможных вариантов схем предельного состояния системы. Использование этого положения часто (не только при растяжении и сжатии стержней, но также при их изгибе и других видах деформаций) позволяет наиболее просто определять значения предельных нагрузок.  [c.590]

Расчет балок по предельным нагрузкам при поперечном изгибе несложен, потому что условие возникновения течения в балке (условие образования пластического шарнира) определяется значением одного единственного внутреннего силового фактора — изгибающего момента. Так же просто подсчитать предельные нагрузки и в стержневых системах, отдельные стержни которых работают только на растяжение или сжатие. Для пластин и особенно для оболочек вся техника вычисления предельных нагрузок существенно усложняется, поскольку условие течения в них определяется комбинацией значений нескольких внутренних силовых факторов. Но сам подход к определению предельных нагрузок и сущность статического и кинематического методов остаются теми же.  [c.177]

Эффективность дробеструйного наклепа оценивают а) по повышению срока службы детали в эксплуатации или по ее долговечности (в часах или в циклах нагружений) при стендовых испытаниях б) по повышению несущей способности летали, т. е. по повышению той предельной нагрузки (того напряжения), при которой деталь еще не разрушается при определенном количестве циклов нагружений. Дробеструйный наклеп особенно эффективен 1) в отношении деталей, на поверхности которых сосредоточены концентраторы напряжений 2) в тех случая, когда поверхностные слои детали являются носителями вредных растягивающих напряжений, обусловленных ранее проведенными технологическими процессами, или когда они испытывают повышенную напряженность вследствие самого характера нагружения детали (изгиб, кручение) 3) при обработке деталей повышенной твердости, прошедших жесткую термическую обработку.  [c.586]

Б. Изгиб балок. При расчетах на предельную нагрузку ограничимся рассмотрением брусьев с симметричными относительно оси Су сечениями, и будем пренебрегать перерезывающими силами, т. е. будем рассматривать чистый изгиб (см. определение 5.2).  [c.442]


Внецентренное сжатие стержней большой жесткости в пластической области. Так как при внецентренном сжатии, так же как и при чистом изгибе, нормальные напряжения, а следовательно, и соответствующие им деформации изменяются пропорционально расстояниям волокон от нейтральной плоскости, то пластические деформации впервые появляются в волокнах, наиболее удаленных от этой плоскости, в большинстве случаев — в сжатых. По мере роста деформаций пластическое состояние охватывает все большее и большее число волокон, так что в се-чении образуются целые зоны пластичности, охватывающие все большую и большую часть сечения. Граница между упругой и пластической зонами постепенно приближается к нейтральной оси, которая в свою очередь меняет свое положение. В зависимости от поведения материала при пластической деформации окончание этого процесса может иметь различный характер. Мы рассмотрим только случай, когда материал деформируется пластически без упрочнения и имеет одинаковые пределы текучести при растяжении и сжатии. В этом случае пластическая деформация, начавшаяся в сжатой зоне сечения, при определенной величине нагрузки распространяется и на растянутую зону, охватывая постепенно все большую и большую ее часть. Таким образом, за предельное состояние можно принять такое, при котором та и другая зоны сечения оказываются в со- стоянии пластической деформации, т. е. напряжения во всех точках равны соответствующему пределу текучести. Тогда на основании (7.1) получим  [c.257]

Балка - Деформация сдвига при малом прогибе 18 - Изгиб 58, 67 - Инерционная характеристика при колебаниях 71 - Краевой эффект деформации 23 - Метод Максвелла - Мора определения малых прогибов 19 - Модель основания Винклера 21 - Нагрузка предельная 6.0, 61 -Несущая способность 59 - Универсальная формула для определения малых прогибов 19 - Уравнение изгибных колебаний 72, равновесия 69 - Функция собственных колебаний 100  [c.616]

Состояние поверхности деталей, концентраторы напряжений, окружающая среда, температура и прочие факторы настолько сильно влияют на сопротивление усталости, что сама по себе усталостная прочность металла гладких шлифованных образцов не является сколько-нибудь показательной. Кроме того, между пределом выносливости a i образцов и временным сопротивлением разрыву для сталей существует довольно устойчивая зависимость (рис. 12), которую можно использовать для расчетного определения предела выносливости на основе кратковременных испытаний на растяжение [81]. В большинстве случаев испытания на усталость ведут при напряжениях от изгиба или кручения. Реже применяют осевые (растяжение-сжатие) или сложные нагрузки (изгиб -f кручение и др.). При этом различают испытания при заданных величинах напряжений (мягкая нагрузка) и деформаций (жесткая нагрузка). В последнем случае усталостной характеристикой испытуемого объекта является предельная величина  [c.19]

Машины для испытаний при динамических (ударных) нагрузках, называемые копрами, по конструктивному оформлению п назначению подразделяются на вертикальные, маятниковые и ротационные. Вертикальные копры, используемые для определения технологических свойств материала — величины осадки, угла прогиба, имеют свободно падающий боек и обычно измерительными устройствами не оснащаются. При необходимости определения работы, затраченной на деформацию образца, копрам придаются специальные регистрирующие устройства. Наибольшее распространение в лабораторной практике получили маятниковые копры для испытаний образцов на ударные изгиб (ударную вязкость) и растяжение. Принцип работы маятниковых копров основан на деформировании образца тяжелым маятником при однократном приложении нагрузки. Па конструкции они разделяются на копры с переменным запасом работы (с одним бойком) и копры с определенным запасом работы (бойки сменные). Первые рассчитаны на работу 150—2500 дж (15—250 кГ-м). Наиболее ходовыми являются копры с предельным запасом работы 150 дж (15 кГ-м)—МК-15 и 300 дж (30 кГ-м) —МК-30.  [c.8]


Какими преимуществами обладают стандартизованные детали (сборочные единицы) при конструировании и выполнении ремонтных работ 7. Что такое стандартизация и унификация деталей и сборочных единиц машин и каково их значение в развитии машиностроения 8. Какие основные требования предъявляются к машинам и их деталям 9. Назовите материалы, получившие наибольшее применение в машиностроении, и укажите общие предпосылки выбора материала для изготовления детали. 10. Какое напряжение называется допускаемым и от чего оно зависит 11. От чего зависит размер предельного напряжения и требуемого (допускаемого) коэффициента запаса прочности 12. Дайте определения цикла напряжений, среднего напряжения цикла, амплитуды напряжения и коэффициента асимметрии цикла напряжений. 13. Какой цикл напряжений называется симметричным, отнулевым, асимметричным 14. Могут ли в детали, работающей под действием постоянной нагрузки, возникнуть переменные напряжения 15. Укажите основные факторы, влияющие на значение допускаемого напряжения и коэффициента запаса прочности. 16. Что следует понимать под табличным и дифференциальным методами выбора допускаемых напряжений 17. Запишите формулу для вычисления допускаемого напряжения при симметричном цикле и статическом нагружении детали. Дайте определения величин, входящих в эти формулы. 18. Запишите формулу для вычисления значения расчетного коэффициента запаса прочности при симметричном цикле напряжений для совместного изгиба и кручения. 19. Укажите основные критерии работоспособности и расчета деталей машин. Дайте определения прочности и жесткости. 20. Сформулируйте условия прочности и жесткости детали.  [c.20]

Определение предельной нагрузки при изгибе полосы с двумя неравными трещинами / Сб. Вопр. механ. реальн. тверд, тела . — Киев Наук, думка.  [c.434]

Данные для предельного состояния, вычисленные по приведенной схеме, совп ь дают с результатами испытаний. Применение этой схе лы для определения разрушающих нагрузок приводит в случае преобладающей доли изгибающего момента с существенным отклонениям от опытных данных, полученных как при кратковременных испытаниях при комнатной температуре, так и длительных в условиях ползучести. Изгибающая нагрузка мало сказывается (при принятых методах расчета) на величине разрушающего давления. Чувствительными к изгибным напряжениям оказались поперечные сварные соединения, имеющие пониженную пластичность. В связи с изложенным для оценки влияния дополнительных напряжений в нормах приняты формулы, выведенные для предельного состояния. Пониженная сопротивляемость сварных стыков изгибу учтена при определении изгибных напряжений введением коэффициента прочности сварных соединений при изгибе ф . Рекомендуемые значения коэффициента приняты по опытным данным и подлежат в дальнейшем уточнению.  [c.301]

Рассмотрим конструдцию, материал которой схематизирован жесткопластическим телом. Значение нагрузки, при котором такая конструкция в результате развития пластических деформаций становится кинематически изменяемой превращается в жехаяазж), называется предельной нагрузкой. Определение предельных нагрузок покажем сначала на простейшем примере поперечного изгиба неразрезной балки (рис. 6.11). При заданной форме поперечного сечения балки, пренебрегая влиянием перерезывающей силы, нетрудно найти максимальное значение момента М , при котором в сечении балки образуется так называемый пластический шарнир.  [c.175]

В начале ее сообщается о выполненных Кулоном испытаниях ло определению прочности одной из разновидностей песчаника. Для испытания на растяжение Кулон использовал квадратные плитки со сторонами 0,3 м (1 фут), толщиной 25 мм (1") и придавал образцам форму, показанную на рис. 29, а ). Таким путем он находил предел прочности при растяжении равным 15 кг см (215 фтп1дм ). Для испытаний того же материала на срез он пользуется прямоугольными брусками, сечением 25x50 мм (1x2") и прилагает срезывающую силу Р в сечении ge заделки (см. рис. 29, б). Он находит, что предел прочности при срезе оказывается в данном случае равным пределу прочности при растяжении. Наконец, он ставит испытания на изгиб (рис. 29, в), пользуясь для этой цели брусками высотой 25 мм (1")> шириной 50 мм (2"), длиной 230 мм (9") и находит, что предельная нагрузка Р при этом равна 9 кг.  [c.64]

Номер профиля ходового пути, обусловливающий толщину ездовой полки, определяют по максимальной расчетной нагрузке на каретку в зависимости от несущей способности ездовой полки пути. Следовательно, для каждого заданного профиля пути можно установить предельные нагрузки на каретку по прочности ездовой полки (см. ниже). При выбранном профиле расчет ходового пути сводится к определению максимального допускаемого расстояния между креплениями различных участков пути конвейера, т. е. свободного пролета балки пути. Пролет балки пути определяют из расчета на прочность от поперечного и местного изгиба, деформацию прогиба и устойчивость. При расчете на прочность следует учитывать, что при работе конвейера возможен значительный износ ездовых поверхностей путевой балки. Для надежной работы конвейера требуется повышенная жесткость ходового пути, особенно на участках, примыкающих к поворотным устройствам. Поэтому для балок из стали СтЗ рекомендуется принимать допускаемое напряжение на изгиб (поперечный и местный) Оп.д 1200 кгс/см , допускаемый прогиб fmax = 1/500 длины пролета коэффициент запаса по устойчивости % = 1,7 -h 2,0. Для стали 14Г2 можно принять Оп.д = 1400 к,гс/см .  [c.101]


Были проведены натурные испытания плит для выявления характера изменения жесткости поперечного сечения в зависимости от усилий и определения величины этой жесткости при предельно возможной ширине раскрытия трещин. Испытаниям подвергались демонтированные из покрытия три плиты, работавшие на различных грунтовых основаниях (для плит № 1 и 2 — супесь 0,7 м и далее мелкий песок, для плиты № 3 — суглинок). До испытания у всех плит поперечных трещин на поверхностях обнаружено не было. В плите №2 имелись небольшие сколы бетона продольной кромки вблизи середины, а в плите № 3 — около монтажных скоб без обнажения арматуры. Нагружение плит осуществлялось ступенями с трехкратным повторением по схеме, позволяющей создать зону чистого изгиба. В эксперименте замерялась кривизна поверхности плиты механическими кривизномерами с базой 0,6 м, располагавшимися в зоне чистого изгиба. На кривизномерах устанавливались индикаторные головки МИГ-1 с ценой деления 0,001 мм. Отсчеты показаний снимались перед началом нагружения и на каждой ступени. Очередное нагружение проводилось не ранее, чем через 2-3 мин. после разгрузки. После полного нагружения замеряли ширину раскрывшихся трещин с помощью микроскопа типа МПБ-2. Под нагрузкой поперечные трещины образовались в средней части плиты через 7—18 см, а ширина наиболее раскрывшихся из них составила 0,20—0,25 мм. После снятия нагрузки трещины полностью закрывались. Жесткость сечений плит после первой ступени нагружения (до появления трещин) превышала расчетную, определяемую как для бетонного сечения. С дальнейшим увеличением нагрузки жесткость уменьшалась, приближаясь к некоторой величине, в 1,5-2,5 раза превышающей расчетную и определяемой по известному выражению для жесткости армированного сечения [239].  [c.215]

Достоинством канатно-балочных систем (рис. 223) является их повышенная жесткость на изгиб, которая возрастает в случае применения в качестве поперечной конструкции ферм, заделанных в опорный контур. Конструкция покрытия приобретает пространственную жесткость, хорошо работает при местном загружении и позволяет применять легкую кровлю. Однако стрела провеса в таких конструкциях не может быть менее /15 пролета. Приближенный способ расчета однопоясных висячих покрытий с гибкими нитями сводится к определению сечения гибкой нити и оттяжек, а в круглых сооружениях еще и сечений опорного наружного и среднего внутреннего колец. Подбор сечения несущих элементов осуществляют на стадии монтажа, так как суммарная нагрузка на покрытие с учетом напрягающего балласта будет больше расчетной нагрузки. В качестве расчетной схемы сооружения в предельном состоянии принимают плоскую гибкую нить с опорами на одном или на разных уровнях.  [c.262]

При расчете по несущей способности расчетными критериями являются следующие величины а) при расчете на прочность, а также общую устойчивость по формулам, определяющим условные на пряжения с при- менением коэффициента продольного изгиба <р — расчетное сопротивление Р (глава 2) б) при расчете на местную ил1 общую устойчивость, когда в результате статического расчета определяется критическое нап1зя-жение Чкр или критическое усилие, или критическая нагрузка — упомянутые вeличин I являются расчетными кригериями несущей способности. Расчетные формулы для определения критериев несущей способности по предельному состоянию приведены ниже.  [c.382]


Смотреть страницы где упоминается термин Определение предельной нагрузки при изгибе : [c.206]    [c.417]    [c.446]    [c.36]    [c.421]    [c.262]   
Смотреть главы в:

Проектирование тонкостенных конструкций Изд.3  -> Определение предельной нагрузки при изгибе



ПОИСК



БАНДАЖИ статически определимые — Определение поперечных сил и изгибающих моментов 61, 62, 64 —Предельная нагрузка — Определени

Нагрузка предельная

Нагрузки на изгиб

Определение предельной нагрузки

Предельные Определение



© 2025 Mash-xxl.info Реклама на сайте