Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Координатные системы в механике сплошной среды

Тензор характеризует сразу три напряжения по трем взаимно перпендикулярным площадкам и используется для описания физических явлений и процессов, происходящих в упругой среде. В механике сплошной среды используется трехмерное евклидово пространство с различными системами координат. Примененный для описания напряженного состояния точки тензор напряжений инвариантен относительно преобразования прямоугольных координатных осей. Тензор напряжений симметричный, так как коэффициенты матрицы симметричны относительно главной диагонали и равны между собой. Задать тензор напряжений— значит определить напряженное состояние в данной точке тела. В частных случаях напряженное состояние точки определяет напряженное состояние всего тела (при простом растяжении — сжатии), такое напряженное состояние называется однородным.  [c.8]


Координатные системы в механике сплошной среды.  [c.13]

Для механики сплошной среды вообще и механики деформируемого твердого тела в частности аппарат теории тензоров является естественным аппаратом. В большинстве теорий выбор системы координат, в которых ведется рассмотрение, может быть произвольным. Проще всего, конечно, вести это рассмотрение в ортогональных декартовых координатах. Очевидно, что доказательство общих теорем и установление обнщх принципов при написании уравнений именно в декартовых координатах не нарушает общности. Что касается решения задач, то иногда бывает удобно использовать ту или иную криволинейную систему координат. Однако при этом почти всегда речь идет о простейших ортогональных координатных системах — цилиндрической или сферической для пространственных задач, изотермической координатной сетке, порождаемой конформным отображением, для плоских задач. В некоторых случаях, когда рассматриваются большие деформации тела, сопровождаемые существенным изменением его формы, система координат связывается с материальными точками и деформируется вместе с телом. При построении соответствующих теорий преимущества общей тензорной символики, не связанной с определенным выбором системы координат, становятся очевидными. Однако в большинстве случаев эти преимущества используются при формулировке общих уравнений, не открывая возможности для решения конкретных задач. Поэтому мы будем вести основное изложение в декартовых прямоугольных координатах, случай цилиндрических координат будет рассмотрен отдельно.  [c.208]

V В области математической теории пластичности к наиболее анним (семидесятые годы прошлого столетия, работы Треска и Сен-Венаиа) относится первая теория так называемой динамической школы пластичности, рассматривавшая задачу пластичности, как задачу механики сплошных сред и ограничивавшаяся случаем плоской деформации. Система основных уравнений этой теории состоит из пяти дифференциальных уравнений в частных производных с пятью неизвестными функциями (тремя составляющими напряженного состояния материального элемента пластически деформируемого тела и двумя проекциями на координатные оси вектора скорости) от трех независимых аргументов (двух координат материального элемента и времени). Такими уравнениями являются два основных уравнения динамики сплошных сред и три дополнительных уравнения, вытекающих из принятых в данной теории допущений — условия постоянства объема деформируемого элемента, условия совпадения плоскости наибольшей скорости скольжения с плоскостью наибольшего скалывающего напряжения и условия постоянства величины наибольшего скалывающего напряжения по всему объему деформируемого тела.  [c.17]


В 6 изложен, как нам представляется, наиболее простой приём составления основных дифференциальных операций в криволинейных координатах. Мы ограничились случаем ортогональных координат, как наиболее важным для приложений. В 7 этот приём применён для записи в ортогональных криволинейных координатах основных соотношений механики сплошной среды, в том числе для составления условий сплошности. Другой вывод условий сплошности (в любых криволинейных координатах) дан в статьях Т, Н. Блинчикова Дифференциальные уравнения равновесия теории упругости в криволинейной координатной системе (Прикл. матем. и мех., 2, 1938, стр. 407) и В. 3. Власова Уравнения неразрывности деформаций в криволинейных координатах (там же, 8, 1944, стр. 301). Запись уравнений сплошности в сферических и цилиндрических координатах приведена в книге В. 3. Власова Общая теория оболочек (Гостехиздат, 1949).  [c.69]

ЧИСЛО компонент тензора равно 3", где N—порядок тензора. Тензор нулевого ранга задается в любой системе координат в пространстве любого числа измерений одной компонентой такие тензоры называются скалярами и выражают физические величины, характеризующиеся только численным значением. Тензоры первого ранга имеют три координатные компоненты в трехмерном пространстве, называются векторами и представляют величины, которые характеризуются как численным значением, так и направлением. Тензоры второго ранга называются диадиками и описывают некоторые характеристики, важные в механике сплошной среды. При математическом изучении механики сплошной среды также определяются и часто используются тензоры более высокого ранга, в частности третьего и четвертого (триадики и тетрадики).  [c.10]

Прежде чем перейти к анализу уравнений (1.8), остановимся на некоторых общих вопросах. До сих пор мы рассматривали движение одной и той же точки нити М. Такой метод принадлежит, по-существу, Лагранжу, который в механике сплошной среды выделял частицу и в дальнейшем следил за ее движением. Эйлеру принадлежит другой метод, сущность которого состоит в следующем. В координатной системе Oxyz (она может быть подвижной или неподвижной) выделяется точка N, определяемая в данной системе отсчета радиусом-вектором г или координатами х, у, z, В каждый данный момент времени t мимо этой точки проходит какая-то частица М сплошной среды, имеющая скорость v, Эйлер предложил выражать скорость v как функцию радиуса-вектора точки N (или ее координат) и времени t  [c.174]


Смотреть страницы где упоминается термин Координатные системы в механике сплошной среды : [c.91]   
Смотреть главы в:

Теория упругости  -> Координатные системы в механике сплошной среды



ПОИСК



Координатные оси и координатные системы

Механика сплошной

Механика сплошных сред

Ось координатная

Система координатная

Сплошные системы

Среда сплошная



© 2025 Mash-xxl.info Реклама на сайте