Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аналитические характеристики и сравнение методов

АНАЛИТИЧЕСКИЕ ХАРАКТЕРИСТИКИ И СРАВНЕНИЕ МЕТОДОВ  [c.155]

Рассмотрим теперь закономерности изменения объема при использовании в современных двигателях Стирлинга различных приводных механизмов и сравним их с идеальными характеристиками. Кроме того, сравним реальное движение поршня с синусоидальным движением. Такое сравнение полезно, поскольку классический анализ двигателя Стирлинга — метод Шмидта [56] — позволяет получить решения в замкнутом виде, если принять предположение о синусоидальном движении. Это очень удобный аналитический метод, поскольку при исследовании системы достаточно рассмотреть только рабочий объем, а не все характеристики приводного механизма. Однако приближение синусоидального движения часто используют необоснованно и поэтому неправильно описывают движение поршня. Например, движение ромбического приводного механизма нельзя опи-  [c.284]


Несмотря на то что при переходе от плоскостей к сферам формулы преобразования угловых аберраций пятого порядка существенно усложняются [ср. формулы (2.5) и (2.8)], в развернутых соотношениях для канонических коэффициентов волновой аберрации (2.9) это усложнение не столь заметно. Помимо чисто аналитического расчета (см. гл. 4) формулы (2.9) можно использовать в качестве основы для программы расчета на ЭВМ таких характеристик оптической системы, как волновая аберрация, оптическая передаточная функция и др., без прослеживания хода лучей через систему, а следовательно, с минимальными затратами машинного времени. Такой метод расчета оправдан, если аберрации седьмого порядка в данной оптической системе незначительны по сравнению с аберрациями третьего и пятого порядков, что бывает не всегда.  [c.49]

Системы с одной степенью свободы, как правило, позволяют получать решение уравнений движения в аналитической форме, что существенно упрощает последующее определение вероятностных характеристик выхода при известных вероятностных характеристиках входа . Причем для уравнений с постоянными коэффициентами вероятностные характеристики выхода в ряде случаев можно получить и в аналитической форме, удобной для анализа. Для систем с конечным числом степеней свободы, например линейных с постоянными параметрами, рещение можно, в принципе, получить в аналитической форме записи, но существенной пользы от такого решения вследствие громоздкости формул по сравнению с численным решением нет, поэтому, как правило, численным методам исследования случайных колебаний отдается предпочтение.  [c.259]

В рассматриваемых задачах, где часть контура (слева от а) задана, а часть строится в процессе решения, для расчета области сверхзвуковых скоростей естественно и наиболее оправдано применение классической схемы метода характеристик (МХ). Нри этом в силу более высокой точности МХ по сравнению с СГК целесообразно использовать минимум информации, получаемой по СГК в процессе установления. Ниже в качестве такого минимума бралась зависимость на ЗЛ угла наклона 19 = 19 вектора скорости к оси х от одной из координат. Эта зависимость корректировалась затем в соответствии с известными аналитическими решениями. Указанной информации достаточно для того, чтобы по ней с помогцью МХ рассчитать все сверхзвуковое течение и построить контур аЬ. Одновременно вновь строится и ЗЛ, что служит одним из критериев оценки точности результатов счета.  [c.514]

Большинство физических задач, с которыми сталкиваются сегодня инженеры, физики и специалисты в области прикладной математики, обнаруживает ряд существенных особенностей, которые не позволяют получать точные аналитические решения. Такими особенностями являются, например, нелинейности, переменные коэффициенты, границы сложной формы и нелинейные граничные условия на известных или, в некоторых случаях, неизвестных границах. Если даже точное решение некоторой задачи явно найдено, оно может оказаться бесполезным для математической и физической интерпретаций или численных расчетов. Примерами таких задач являются функции Бесселя большого порядка при больших значениях аргумента и двоякопериодические функции. Таким образом, для получения информации о решениях уравнений мы вынуждены прибегнуть к аппроксимациям, численным решениям или к сочетанию этих двух методов. Среди приближенных методов прежде всего следует назвать асимптотические методы возмущений, которые и являются предметом этой книги. Согласно этим методикам, решение представляется несколькими первыми членами асимптотического разложения, число которых обычно не превышает двух. Разложения могут проводиться по большому или малому параметру, который естественно возникает в уравнениях или вводится искусственно для удобства. Такие разложения называются возмущениями по параметру. С другой стороны, разложения могут быть проведены по координатам для больших или малых значений в этом случае они называются возмущениями по координатам. Примеры разложений по параметру и координате и их существенные характеристики даны в 1.1 и 1.2. Для формализации понятий пределов, оценок погрешности в 1.3 введены определения символов порядка и другие обозначения. Параграф 1.4 содержит опреде ления асимптотического разложения, асимптотической последовательности и степенного ряда в 1.5 дается сравнение сходящегося и асимптотического рядов. Затем, в 1.6 определены равномерные и неравномерные асимптотические разложения. Краткая сводка операций над асимптотическими разложениями дана в 1.7.  [c.9]


Норм точности химического анализа, предусмотренных государственными стандартами на методы аналитического контроля, и разработки на этой основе норм точности установления аттестованных характеристик с учетом того, что погрешность СО должна быть пренебрежимо мала по сравнению с погрешностью того метода анализа, для контроля которого предназначен образец. Этот этап характеризовался как согласование точности а,ттестованных характеристик СО с официально гарантируемой стандартами точностью рабочих методик измерений химического состава.  [c.72]

По сравнению с чисто численными методами не только существенно сокращается машинное время, ио и представляется возможным исследовать на основе аналитических зависимостей и быстросчетной программы влияние параметров машинного агрегата на динамические характеристики стопорного режима.  [c.272]

Полнота описания явления, корректность исходной теоретической модели должны сочетаться с правильностью математической формулировки задачи. При этом следует иметь в виду, что физическое решение может существовать и найдено на основе эксперимента, в то время как исходное математическое описание не позволяет получить решения. Если существует решение задачи в первичных переменных, то обобщенное решение может быть получено. В связи с возможностью описания системы в обобщенных безразмерных переменных, базируясь на методе подобия и анализе размерностей, можно получить критериальное уравнение, состоящее из обобщенных характеристик рассматриваемой системы. При описании системы критериальными уравнениями как бы уменьшается число параметров, независимых координат, решение обладает большой общностью. Получение критериев подобия, основанных на методе подобия, предполагает использование математического описания объекта. Исходные дифференщ -альные уравнения, характеризующие процесс, содержат более глубокую информацию по сравнению с той, которую получаем из анализа размерностей ответственных величин. Исследование процесса методом подобия включает получение безразмерных характеристик (критериев подобия) и вывод критериального уравнения. Аналитический вывод критериального уравнения возможен, когда исходное уравнение имеет точное решение. Во всех других случаях формирование критериальных уравнений осуществляется на базе специальных экспериментальных исследований (или дрз -ой дополнительной информации). Критериальная зависимость должна учитьшать критерии, полученные из анализа как основных уравнений, так и граничных условий.  [c.165]

Выбор ХМЧ длА целей приближенного моделирования процесса определялся, в первую очередь, простотой получающегося математического выражения. Действительно, если аппроксимацию проводить в наиболее наглядной временной области, то требуется выполнить переход от изображения к оригиналу (импульсной переходной функции). Такой переход возможен лишь в ограниченном числе случаев, и к тому же аналитическое выражение переходной функции, как правило, оказывается весьма сложным, трудно поддающимся анализу. Этим обстоятельством объясняется развитие методов, основанных на анализе поведения передаточной функции в комплексной области, в частности, на исследовании частотных характеристик. Частотные характеристики нашли широкое применение в самых различных задачах динамики систем. К их недостатку следует отнести существенное усложнение их математического выражения по сравнению с исходной передаточной функцией Яfpf в связи с зшеной p = i(k> и разделением действительной и мнимой частей Р(и>j.  [c.20]


Смотреть страницы где упоминается термин Аналитические характеристики и сравнение методов : [c.466]    [c.152]    [c.89]    [c.7]    [c.378]    [c.140]   
Смотреть главы в:

Металловедение и термическая обработка стали Т1  -> Аналитические характеристики и сравнение методов

Металловедение и термическая обработка стали Справочник Том1 Изд4  -> Аналитические характеристики и сравнение методов



ПОИСК



Метод аналитический

Метод характеристик

Сравнение МКЭ и МГЭ



© 2025 Mash-xxl.info Реклама на сайте