Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчеты оболочек по предельным нагрузкам

Расчеты оболочек по предельным нагрузкам  [c.174]

Расчет балок по предельным нагрузкам при поперечном изгибе несложен, потому что условие возникновения течения в балке (условие образования пластического шарнира) определяется значением одного единственного внутреннего силового фактора — изгибающего момента. Так же просто подсчитать предельные нагрузки и в стержневых системах, отдельные стержни которых работают только на растяжение или сжатие. Для пластин и особенно для оболочек вся техника вычисления предельных нагрузок существенно усложняется, поскольку условие течения в них определяется комбинацией значений нескольких внутренних силовых факторов. Но сам подход к определению предельных нагрузок и сущность статического и кинематического методов остаются теми же.  [c.177]


Роль наших ученых в развитии сопротивления материалов особенно проявилась после Великой Октябрьской социалистической революции. Советскими учеными решен ряд важнейших проблем сопротивления материалов и механики вообще. К ним прежде всего следует отнести новые методы решения задач на устойчивость и динамические нагрузки, развитие теории упругости и пластичности, в частности создание общей теории расчета тонкостенных оболочек и тонких стержней разработку методов расчета конструкций по предельным состояниям развитие теории и практики конструирования систем, находящихся под действием высоких температур при больших скоростях движения, и т. д.  [c.17]

Одним из основных при определении несущей способности пространственных конструкций является вопрос о напряженном состоянии и работе сечений в местах образования линий излома и шарниров текучести. В зависимости от принятого в расчете распределения сил в сечении в предельной стадии изменяется расчетная предельная нагрузка. При различных схемах разрушения в предельном состоянии находятся различные сечения конструкций. В одних случаях исчерпывается несущая способность поперечного сечения конструкций в целом, в других — прочность конструкции зависит от несущей способности отдельных ее элементов (полки, ребер, диафрагм и т. д.). По мере исчерпания несущей способности в пространственных конструкциях, как и в плоскостных системах, происходит перераспределение усилий. В большинстве случаев расчет прочности покрытий в виде оболочек тесно связан с выяснением закономерностей перераспределения сил в таких системах.  [c.172]

Разрушение первой оболочки произошло при нагрузке 57 ООО Н/м , второй — при 46 ООО Н/м . Средняя разрушающая нагрузка для двух оболочек составила 51 500 Н/м . В рассматриваемом примере предельная нагрузка для зоны разрушения совпадает со средней нагрузкой для модели. Отношение расчетной предельной нагрузки к опытной составляет 0,9326. Несущая способность одной модели по расчету составляла 40 240 Н/м , а ее отношение к полученной в эксперименте было равно 0,87. Прочность второй модели в расчете составляла 61 820 Н/м , а ее отношение к фактической несущей способности — 1,08.  [c.214]

Параллельно с экспериментальными исследованиями разрабатывались методы расчета несущей способности оболочек. В работе [25, ч. 2] дано предложение по оценке несущей способности ребристых оболочек как брусьев, работающих на упругом основании. В исследовании [37, ч. 2] принимается, что разрушение конструкций наступает в момент исчерпания несущей способности оболочки от кольцевых нормальных растягивающих сил. При этом усилия в растянутой арматуре уравновешиваются сжатием полки в центре оболочки у нагрузки. В меридиональном направлении ребра в зоне кольцевого пластического шарнира почти по всей высоте работают на сжатие. В местах образования пластических шарниров действуют моменты сил. В работе 17] основные положения, характеризующие поведение оболочек в предельной стадии (схема разрушения, напряженное состояние ребер), приняты как в работе [37, ч. 2]. При этом считается, что плита в месте кольцевого пластического шарнира работает только на изгиб.  [c.243]


В этой формуле два первых члена представляют собой работу внутренних сил в ребре в верхнем шарнире два следующих члена — работу плиты оболочки и последний член — работу растянутой арматуры нижнего шарнира. Расчеты предельной нагрузки для разных зон разрушения по второй схеме сведены в табл. 3.12 и представлены на рис. 3.44. Как видно из таблицы.  [c.266]

Расчет 3 — 265 Оболочки вращения — Определение изгибных напряжений 3 — 207 --под действием равномерно распределенной нагрузки по поверхности и моментов по торцам -Предельная нагрузка 3—S86  [c.445]

И. РАСЧЕТ СОПРЯЖЕНИЯ СООСНЫХ ОБОЛОЧЕК ВРАЩЕНИЯ ПРИ ОСЕСИММЕТРИЧНОЙ НАГРУЗКЕ ПО ПРЕДЕЛЬНОМУ СОСТОЯНИЮ  [c.447]

При прохождении тока по жилам кабеля в них, а иногда и в оболочке, возникают потери, ведущие к нагреву кабеля. От правильного расчета предельно допустимой токовой нагрузки кабеля зависят пропускная мощность, срок службы и надежность работы кабеля в эксплуатации. Срок службы и надежность работы кабеля обусловливаются правильно выбранной для данного изоляционного материала предельно допустимой рабочей температурой, занижение которой приводит к неполному использованию в кабелях меди, изоляции и перерасходу других материалов.  [c.33]

В [3.167] рассмотрена оболочка типа сферического купола или сферического пояса при действии периодически изменяющейся во времени радиальной сосредоточенной силы, приложенной в произвольной точке. Общее решение задачи получено в виде суммы сингулярного решения, не учитывающего граничные условия, и регулярного решения, удовлетворяющего заданным граничным условиям. Радиальное смещение и функция напряжений представлены в виде рядов по функциям Лежандра. Эти ряды получены с помощью теоремы сложения для сферических функций при переходе от решения с силой в полюсе сферы к решению с силой в произвольной точке сферы. Случай стационарной нагрузки получается предельным переходом, если частоту колебания нагрузки устремить к нулю. Приведены результаты численного расчета и дано сравнение с решением по классической теории.  [c.225]

Поведение пластинок и оболочек за пределами упругости, их несущая способность представляют значительный интерес для многих областей техники. Расчету пластинок и оболочек по предельному равновесию посвящена довольно обширная литература. Необходимо отметить, что фундаментальные теоремы теории предельного равновесия — статическая и кинематическая были впервые сформулированы и применены к расчету пластинок в Советском Союзе (работы А. А. Гвоздева [23]). В дальнейшем ряд задач о несущей способности пластинок был рассмотрен В. В. Соколовским [155], А. А. Ильюшиным [69], С. М. Фейнбергом [167], А. Р. Ржаницыным [141], Гопкинсом и Прагером [28] и другими авторами. Несущая способность цилиндрической оболочки при нагружении кольцевой нагрузкой была исследована впервые А. А. Ильюшиным [69]. Большое значение в развитии теории упруго-пластических оболочек имели труды Ю. Н. Работнова [133], Г. С. Шапиро, В. И. Ро-зенблюма, М. И. Ерхова. Обстоятельные обзоры работ отечественных и зарубежных авторов, посвященных проблеме упруго-пластического состояния оболочек, даны в статье Г. С. Шапиро [183] и в монографии Ходжа [203].  [c.174]

В рассмотренных примерах выбор пластических режимов деформирования оболочки не составлял никакого труда. В более сложных задачах приходится рассматривать целые серии возможных вариантов пластических режимов, что существенно усложняет решение. В таких случаях прибегают к помощи современных методов линейного и нелинейного программирования с использбванием ЭВМ. Однако нужно отметить, что при этом теряется одно из основных преимуществ расчета по предельным нагрузкам — простота и наглядность.  [c.183]

Уточненный расчет оболочки двигателя. Прежде всего следует оп-ределить запас прочности камеры по предельным нагрузкам. Для этого подсчитанные в нескольких характерных сечениях эксплуатационные суммарные внутренние силы Ti и Т , сравнивают с подсчитанными в тех же сечениях предельными значениями Tip и Т р.  [c.363]


Расчет на прочность по максимальным и предельным нагрузкам, предусматривающий последовательный анализ предельного состояния всех слоев, выполняется так же, как и ранее усложняется лишь процедура определения напряжений в главных осях каждого слоя. Однако метод построения предельной поверхности основан на предположении о равномерном распределении деформаций по толщине и не может быть использован в рассматриваемом случае. Исключение составляют комбинации плоского и из-гибного нагружений, которые сводятся к безмоментному напряженному состоянию материала. В таких условиях работают несущие слои трехслойных панелей и цилиндрические оболочки при специальном характере нагружения.  [c.93]

В гл. 7 изучается влияние схем армирования на предельные нагрузки и деформативность продольно сжатых слабоконических и цилиндрических оболочек из стекло-, органо- и углепластика. Приведены результаты сравнения экспериментальных данных, полученных авторами и известных им из литературных источников, с данными расчетов по формулам теорий анизотропных тел и орто-тропных одно- и многослойных оболочек.  [c.9]

Для расчета динамики тонкостенных конструкций при действии не сильно локализованных нагрузок и возможности осред-ненного описания волновых процессов по толщине используются классические линейные и нелинейные модели многослойных оболочек [2, 4, 24, 25, 27, 35, 40, 190, 195]. В монографии [24] представлена подробная библиография по расчету оболочек из КМ и исследованы вопросы прочности цилиндрических оболочек из слоистых композитов при динамических сжимающих нагрузках (осевом сжатии и внешнем давлении), проведен анализ начальной стадии возникновения разрушения при достижении напряжений предельных значений, которые определяются по критерию прочности анизотропных тел в форме тензорно-нолиноми-альиого условия.  [c.29]

Темпы исследований, связанных с расчетом сосудов высокого давления, столь высоки, что зачастую в общих руководствах и справочниках трудно найти самые последние результаты,— ведь переиздавать большой справочный том ради внесения поправок в один его раздел вряд ли целесообразно. С другой стороны, разыскать нужную работу по расчету сосудов высокого давления в периодической печати нелегко, так как статьи на эту тему печатаются во многих журналах. В связи с 9fHM возникла идея собрать серию неопубликованных оригинальных статей по этой теме в одной книге, удобной для справок и использования в работе. Авторы этих статей являются признанными специалистами из организаций, хорошо известных своими достижениями в исследованиях, связанных с сосудами высокого давления. В книге представлены работы специалистов из Канады, Англии, Голландии, Италии и Японии. Они включают расчет ползучести конструкций, расчет оболочек методом коллокаций с использованием конечных элементов, трехмерный анализ напряженного состояния в зоне пересечения оболочек, приложение метода нижней границы предельной нагрузки, конструирование фланцев и накладок, подкрепляющих оболочки, расчет системы трубопроводов. Из перечисленного видно, что публикуемые в сборнике статьи охватывают широкий круг вопросов,  [c.7]

Так как сечение тонкостенных пространственных конструкций имеет небольшое армирование, то для ориентировочных расчетов в первом приближении можно принять х—0,55 ho. Полное исчерпание несущей способности внецентренно сжатых (растянутых) элементов может иметь место только в том случае, если они взаимодействуют с более прочными окаймляющими их конструкциями. Например, несущая способность полки оболочки может быть исчерпана только в том случае, если она опирается на достаточно прочный контур, который при воздействии на него предельных для сечений полки нормальных сил распора N p и изгибающих моментов Л1пр не разрушится. Если контур не обладает такой прочностью, то возникновению в плите сил iVnp и моментов УИпр будет предшествовать его разрушение. По-видимому, если отвлечься от несовпадения несущих способностей одной и той же конструкции при различных схемах излома, то в оптимально запроектированной с точки зрения прочности конструкции разрушение различных элементов должно наступать при одной и той же нагрузке, т. е. элементы должны быть равнопрочными. В соответствии со сказанным выше, если прочность криволинейного бруса ниже прочности балок, на которые он опирается, то при возникновении в брусе предельных нормальных сил Л/ р и моментов УИпр балки не разрушатся (рис. 3.2). Наоборот, если балки в рассматриваемом примере не обладают достаточной прочностью, то при возникновении в них предельных моментов и их разрушении несущая способность бруса не будет исчерпана и действующие в нем усилия будут меньше предельных. При равнопрочности элементов момент разрушения балок должен совпадать с моментом исчерпания несущей способности бруса. Оценка несущей способности конструкций с учетом взаимного влияния прочности отдельных элементов является, несомненно, приближенной. Более точных результатов можно ожидать при учете не только взаимного влияния прочностей отдельных элементов, но и при учете влияния их деформативности. Если балку подкреплять подвесками с одним и тем же сечением (одной и той же прочностью), но с разной длиной, то очевидно, что несущая способность конструкции при увеличении длины подвески до некоторой оптимальной величины может увеличиваться (рис. 3.2, д). Таким образом, при оценке несущей способности конструкции  [c.176]

Многоволновые оболочки. В многоволновых системах между оболочками в месте их соединения в середине пролета действуют усилия растяжения, а на приопорных участках — усилия сжатия (см. работу [5], ч. 2). Существенно различаются усилия в нижних поясах диафрагм, занимающих разное положение в покрытии. Опытами установлено, что усилия в нижних поясах многоволновых оболочек примерно в два раза меньше, чем в диафрагмах отдельно стоящих оболочек (см. работу [10], ч. 2). В сечении сопряжения оболочек исчерпание несущей способности арматуры в первую очередь наступит в середине пролета. С увеличением нагрузки участок, на котором усилия в арматуре достигли предельного значения, развивается по направлению к опорам. В запас прочности можно принять, что в предельной стадии существенного перераспределения усилий в сжатой зоне не происходит и центр тяжести этой зоны сечения может быть определен из упругого расчета. При этом плечо пары сил в сечении определится как расстояние от центра тяжести сил сжатия до центра тяжести сил растяжения. Предельный момент в сечении по линии сопряжения оболочек  [c.222]


Вероятно, наиболее привычной конструкцией автомобиля без шасси, из числа встречающихся на дорогах, является полуприцеп с несущей цистерной. Длинные цилиндрические оболочки образованы несущими балками круглого сечения. Требование по сохранению большой несущей способности цистерн при одном и том же боковом профиле определило переход от формы прямого кругового цилиндра к эллиптическому, т. е. к так называемым цистернам максимального сечения, боковой профиль которых имеет излом на нижнем контуре, как показано на рнс. 3.30. Отделы транспорта и сбыта ведущих компаний по производству алюминия стремятся разработать полу-эмпирические методы расчета цистерн. В этом отношении типичным является следующий подход принимается, что тонкостенные обо-лочечные балочные конструкции теряют устойчивость при экстремальных конструктивных нагрузках раньше, чем в них достигаются предельные напряжения при растяжении, сжатии или сдвиге. Для зоны сжатия нагруженной цилиндрической цистерны, показанной на рис. 3.30, по элементарной балочной теории критическое напряжение а = МуИ, и началу выпучивания соответствует напряжение, вычисляемое по эмпирической формуле а р = 0,38Etlr.  [c.95]


Смотреть страницы где упоминается термин Расчеты оболочек по предельным нагрузкам : [c.256]    [c.630]    [c.267]    [c.551]   
Смотреть главы в:

Строительная механика ракет  -> Расчеты оболочек по предельным нагрузкам



ПОИСК



Нагрузка предельная

Нагрузки Расчет

Оболочка Расчет

Расчет по предельным нагрузкам

Расчет сопряжения соосных оболочек вращения при осесимметричной нагрузке по предельному состоянию



© 2025 Mash-xxl.info Реклама на сайте