Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Численное интегрирование нелинейного уравнения теплопроводности

Численное интегрирование нелинейного уравнения теплопроводности  [c.94]

В книге существенное место (первая часть) уделяется численным методам решения уравнения теплопроводности, в том числе и нелинейного, при переменных граничных условиях. Одновременно с методом численного интегрирования излагается решение некоторых несимметричных тепловых задач аналитическим методом. Наибольшей простотой при достаточно хорошей точности отличаются табличные методы, которые позволяют конструктору уже на этапе проектирования определить тепловой режим машины. Поэтому первая часть книги, посвященная методам расчета нестационарных тепловых процессов, заканчивается изложением основ табличного метода расчета. Особенностью таблиц является асимметричность теплового воздействия.  [c.4]


Зуев A. И. [1966. О трехслойной схеме для численного интегрирования уравнений газодинамики и нелинейного уравнения теплопроводности. — В кн. Численные методы решения задач математической физики. — М. Наука.  [c.556]

Для нахождения скорости пламени они отвергают метод того или иного упрощения при интегрировании системы нелинейных дифференциальных уравнений, описывающих процессы диффузии и теплопроводности во фронте пламени. Авторы вместо этого предполагают находить точное решение путем численного интегрирования этих уравнений с использованием всех широких возможностей современной вычислительной техники.  [c.28]

Аналогичные с позиций вычислительной математики задачи возникают для многих точных решений задач теории теплопроводности и конвективного теплообмена. Поэтому далее рассмотрим методы решения нелинейных уравнений, методы численного интегрирования, а также приведем некоторые рекомендации по программной реализации точных аналитических решений.  [c.53]

Методами взвешенных невязок удается решать и нелинейные задачи нестационарной теплопроводности, но при этом для определения Вп (t) в (4.48) получается система нелинейных обыкновенных дифференциальных уравнений, которую в общем случае приходится интегрировать численно. Таким образом, температурное поле в теле в фиксированный момент времени описывается аналитической зависимостью, но переход от одного момента времени к другому связан с определением значений (t) численным интегрированием. Переход к конечным интервалам времени позволяет использовать вариационную формулировку нелинейных задач [13], представляя анализ процесса нестационарной теплопроводности как последовательность решений ряда задач стационарной теплопроводности.  [c.166]

В уравнении теплопроводности можно аппроксимировать конечными разностями производные не по всем независимым переменным. В итоге получится система дифференциальных уравнений (обыкновенных или в частных производных). Если удается получить аналитическое решение такой системы, то оно будет приближенным решением задачи, так как при конечноразностной аппроксимации внесена погрешность в математическое описание процесса тегглопро-водности. Однако обычно такой прием частичной замеггы производных конечными разностями, известный как метод прямых [27], используют для решения полученной системы уравнений одним из эффективных численных методов. Например, для задачи нестационарной теплопроводности- аппроксимация производных по пространственным координатам переводит уравнение в частных производных в систему обыкновенных дифференциальных уравнений (в общем случае нелинейных), которая может быть решена методами численного интегрирования Эйлера-Коши, Рунге-Кутта, Адамса и т.п. [4, 104]. Такую же систему обыкновенных диф -ренггиальных уравнений получают из условия баланса тепловых потоков в дискретной модели тела, состоящей из теплоемких масс и теплопроводящих стержней [27].  [c.210]


Разложение в ряды Тейлора по времени нелинейных коэффициентов уравнения движения влаги. При рассмотрении одномерной задачи обсуждался вопрос о повышении точности модели. Одним из способов усовершенствования модели является отказ от квазистационарности коэффициентов уравнения для влаги и их явное интегрирование по времени. Неизвестную функцию рекомендуется раскладывать в ряд Тейлора, а для вычисления производных использовать известную информацию с предыдущих шагов по времени. Интеграл по времени от ряда Тейлора легко вычисляется, т.к. представляет собой сумму степеней. Прием также является приближенным, но по сравнению с квазистаци-онарным подходом он позволяет более чем в 3 раза увеличить шаг по времени с сохранением прежней точности. Этот вывод был сделан на основе исследования поведения численного решения одномерной задачи диффузии жидкости в грунте с простейшими граничными условиями. Отметим, что разложение в ряды коэффициентов теплопроводности не приводит к более точному результату, т.к. эти коэффициенты слабонелинейны, и квазистационарный подход вполне приемлем для решения уравнения движения тепла.  [c.153]


Смотреть страницы где упоминается термин Численное интегрирование нелинейного уравнения теплопроводности : [c.45]   
Смотреть главы в:

Электрическое моделирование нестационарных процессов теплообмена  -> Численное интегрирование нелинейного уравнения теплопроводности



ПОИСК



Интегрирование

Интегрирование уравнений

Интегрирование численное

Нелинейность уравнений

Теплопроводность нелинейная

Уравнение нелинейное

Уравнение теплопроводности



© 2025 Mash-xxl.info Реклама на сайте