Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие свойства движения жидкости. Вихри

В главе 2 описываются те свойства векторов, которые важны при изучении движения частиц жидкости и при рассмотрении гидродинамических уравнений. Векторы вводятся здесь независимо от выбора системы координат. Основные свойства векторных операций выводятся операторным методом, который в изложенной здесь форме легко применяется и непосредственно приводит к теоремам Стокса, Гаусса и Грина. Так как эта книга посвящена гидродинамике, а не векторам, то теория последних излагается кратко. С другой стороны, при изложении этой теории имелось в виду помочь читателям, незнакомым с де1 ствиями над векторами читателю рекомендуется полностью и детально изучить содержание этой главы, что необходимо в силу большого числа ссылок на нее. Этот труд хорошо вознаграждается при стремлении понять физи-чс скую сторону рассматриваемых явлений, которая особенно неясна при использовании специальных систем координат. В главе 3 общие свойства движения непрерывной жидкой среды, динамические уравнения, давление, энергия и вихри изучаются в свете векторных формулировок, преимущество которых вполне очевидно.  [c.10]


Турбулентность принадлежит к числу очень распространенных и, вместе с тем, наиболее сложных явлений природы, связанных с возникновением и развитием организованных структур (вихрей различного масштаба) при определенных режимах движения жидкости в существенно нелинейной гидродинамической системе. Прямое численное моделирование турбулентных течений сопряжено с большими математическими трудностями, а построение общей теории турбулентности, из-за сложности механизмов взаимодействующих когерентных структур, вряд ли возможно. При потере устойчивости ламинарного течения, определяемой критическим значением числа Рейнольдса, в такой системе возникает трехмерное нестационарное движение, в котором, вследствие растяжения вихрей, создается непрерывное распределение пульсаций скорости в интервале длин волн от минимальных, определяемых вязкими силами, до максимальных, определяемых границами течения. На условия возникновения завихренности и структуру развитой турбулентности оказывают влияние как физические свойства среды, такие как молекулярная вязкость, с которой связана диссипация энергии в турбулентном потоке, так и условия на границе, где наблюдаются тонкие пограничные вихревые слои, неустойчивость которых проявляется в порождении ими вихревых трубок. Турбулизация приводит к быстрому перемешиванию частиц среды и повышению эффективности переноса импульса, тепла и массы, а в многокомпонентных средах - также способствует ускорению протекания химических реакций. По мере накопления знаний о разнообразных природных объектах, в которых турбулентность играет значительную, а во многих случаях определяющую роль, моделирование этого явления и связанных с ним эффектов приобретает все более важное значение.  [c.5]

Закон подобия. Число Рейнольдса. В предыдущих параграфах мы уже вывели, опираясь на общие уравнения движения вязкой жидкости, целый ряд свойств этих движений, например, что эти движения должны быть вихревыми движениями, что с течением времени происходит диффузия вихрей, что кинетическая энергия движения частью переходит в тепловую и т. д.  [c.406]

Движение коаксиальных вихревых колец есть пример пространственного осесимметричного вихревого течения. Линии вектора завихренности в этом случае представляют собой замкнутые окружности, центры которых расположены на одной прямой. Исследование такого движения вихрей в идеальной жидкости восходит к работе Г. Гельмгольца [23], где он описал общие свойства области завихренности, имеющей форму тора, то есть одиночного вихревого кольца. Гельмгольц показал, что кольцо малого поперечного сечения движется с постоянной скоростью в ту же сторону, в какую  [c.367]


Следующим после плоских вихревых движений обширным классом являются осесимметричные структуры. Характерным для этих образований является то, что вихревые линии здесь представляют собой замкнутые окружности, центры которых расположены на одной и той же прямой. Впервые такой класс движений вихрей в идеальной безграничной жидкости рассмотрен Г.Гельмгольцем (135). Он изучил общие свойства торообразной области завихренности (одиночного кольца) и в случае кольца малого конечного поперечного сечения показал, что оно движется, не изменяя радиуса центра тяжести поперечного сечения, с постоянной, но весьма большой скоростью, направленной в ту же сторону, в какую жидкость течет сквозь кольцо. В дальнейшем эта вихревая структура являлась предметом многочисленных исследований. Прежде всего это объясняется сравнительной легкостью формирования такого кольца, часто встречаюш.егося и в природе. Удивительным свойством была неоднократно отмечавшаяся способность кольца продвигаться на значительные расстояния, сохраняя во времени свою устойчивую форму. Так, например, отмечалось [5], что холостой выстрел из пушки производит вихревое кольцо диаметром  [c.178]

Поскольку движение точечных вихрей на сфере является обобщением случая плоского вихревого течения, приведем кратко известные результаты для задачи о взаимодействии вихрей на плоскости. Простейший пример движения двух вихрей рассмотрен Гельмгольцем [23]. Г. Кирхгоф [27] установил гамильтоновость уравнений движения N точечных вихрей, а также нашел четыре первых интеграла этой системы, которые связаны с независимостью гамильтониана от времени и его инвариантностью относительно параллельного переноса и поворота системы координат. Интегрируемость задачи трех вихрей отметил А. Пуанкаре [32] (существуют три первых интеграла, находящихся в инволюции). В работе [18] система точечных вихрей рассматривалась в качестве модели двумерной турбулентности. Там же получено решение задачи о взаимодействии трех одинаковых вихрей. Авторы работы [19] на основе численных расчетов устанавливают стохастические свойства системы четырех вихрей и тем самым показывают, что двумерное течение идеальной жидкости в общем случае не является вполне интегрируемой системой. Как уже было отмечено, аналитическое доказательство неинтегрируемости системы четырех точечных вихрей на плоскости дано в работах Зиглина [9, 33]. Отметим также работы [20] и [22]. В [20] проинтегрирована в эллиптических функциях система трех одинаковых вихрей и показана хаотизация движения четырех вихрей равной интенсивности. В [22] рассматриваются интегрируемые случаи движения четырех вихрей.  [c.376]

Существование и единственность решения задачи для нелинейных уравнений осесимметричного движения газа в турбомашине в общем виде не доказаны. Однако можно высказать некоторые соображения в пользу положительного решения этого вопроса. Прежде всего существование решения очевидно из физических соображений даже для самой обшей (трехмерной) постановки. Единственность решения линеаризованных (в отношении производных) уравнений очевидна, так как они сводятся к квазилинейному эллиптическому уравнению типа уравнения Пуассона. Нелинейность уравнений существенно связана с множителем р в уравнении неразрывности, а также с производными от р (т. е. с и 7 ) в уравнении вихрей. Для частного случая линейных уравнений с р = onst up — onst, который отвечает течению несжимаемой жидкости только через неподвижные решетки (ш = 0), существование и единственность решения следуют из тех же свойств, доказанных для более общей задачи трехмерного движения. Нелинейность, зависящая от производных от р, вообше очень слабая. Она связана со смещением линий тока (вдоль которых р постоянно или является известной функцией). В предположении непрерывной зависимости формы линий тока от значений р у задаваемых в виде гладкой функции поперек входного сечения, а также от величины угловой скорости ш (такая зависимость, безусловно, должна быть непрерывной в силу эллиптичности уравнений с гладкими коэффициентами) можно определенно утверждать единственность решения нелинейных уравнений, по крайней мере, для достаточно малых областей А или для достаточно малых  [c.303]



Смотреть главы в:

Лекции по теоретической механике Том 2  -> Общие свойства движения жидкости. Вихри



ПОИСК



Вихрей движение

Вихрь

Жидкости, свойства) свойства)

Общие свойства

Свойства вихрей

Свойства движения

Свойства жидкостей



© 2025 Mash-xxl.info Реклама на сайте