Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряженное состояние при растяжении (сжатии)

Напряженное состояние при растяжении (сжатии)  [c.193]

Надо заметить, что ранее в программе вопросы напряженного состояния были даны отдельной темой, изучавшейся непосредственно после темы Растяжение и сжатие . Конечно, более тесное объединение вопросов напряженного состояния с гипотезами прочности вполне логично и целесообразно. Во-первых, учащиеся к моменту изучения гипотез прочности уже лучше чувствуют идеи и методы предмета, их уровень развития становится выше, они могут лучше понять и усвоить сравнительно сложный материал о напряженном состоянии. Во-вторых, излагая гипотезы прочности после того, как основы теории напряженного состояния были изучены, неизбежно приходится вновь повторять основные сведения и понятия о напряженном состоянии, что приводит к непроизводительной затрате времени и, несомненно, ухудшает восприятие нового материала о гипотезах прочности. В-третьих, при такой системе изложения получается постепенное наслоение знаний о напряженном состоянии в самом начале учащемуся говорят о том, что напряжение зависит от положения площадки действия, затем его знакомят с напряженным состоянием при растяжении (сжатии), потом он изучает чистый сдвиг, наконец, непосредственно перед гипотезами прочности он получает достаточно полные и систематизированные сведения о напряженном состоянии.  [c.150]


Установление основных закономерностей циклической диаграммы деформирования, формулирование соответствующих уравнений состояния, определение их параметров, а также проверку справедливости этих уравнений при малоцикловом деформировании наиболее целесообразно проводить при двух основных видах нагружения — при нагружении с заданными амплитудами напряжений (мягкое нагружение) и с заданными амплитудами деформа ций (жесткое нагружение). При этом лабораторные образцы испытываются в условиях однородного напряженного состояния при растяжении—сжатии или кручении тонкостенных трубок и при соответствующих условиях нагружения (асимметрия цикла, постоянная или переменная температура, частота испытаний, наличие или отсутствие выдержек под напряжением и т. д.).  [c.25]

НАПРЯЖЕННОЕ СОСТОЯНИЕ ПРИ РАСТЯЖЕНИИ (СЖАТИИ). ОБОБЩЕННЫЙ ЗАКОН ГУКА  [c.43]

Напряженное состояние при растяжении (сжатии). Обобщенный закон Гука  [c.172]

НАПРЯЖЕННОЕ СОСТОЯНИЕ ПРИ РАСТЯЖЕНИИ И СЖАТИИ  [c.145]

На примере растяжения и сжатия были выявлены некоторые наиболее важные свойства напряженного состояния. При растяжении в зависимости от ориентации секущих площадок на гранях выделенного прямоугольного элемента (рис. 33) возникают как нормальные, так и касательные напряжения. Последние, независимо от величины нормальных напряжений, подчиняются условию парности (см. 12).  [c.77]

Напряженное и деформированное состояния при растяжении - сжатии  [c.58]

Усталостная трещина зарождается, в зависимости от особенностей данного металла и рода напряженного состояния, на разных стадиях циклического деформирования. Исследования [120, 144 показали что при однородных напряженных состояниях (например, растяжение — сжатие гладких образцов) и слабо неоднородных напряженных состояниях (кручение круглых образцов) в относительно однородных металлах (например, конструкционные стали) трещина возникает после накопления 0,8—0,9 общего числа циклов, необходимых для разрушения. Для менее однородных металлов (серые чугуны) в этих же условиях нагружения трещина возникает после накопления 0,2—0,3 общего числа циклов, необходимых для разрушения. В относительно однородных металлах (конструкционные стали) при условии большой неоднородности напряженного состояния (например, концентрации напряжений) трещина возникает в пределах 0,3—0,4 числа циклов от разрушающего числа.  [c.20]


В целях определения временных эффектов малоциклового деформирования ([20] изучали кинетику напряженно-деформированного состояния при растяжении-сжатии типичных конструктивных элементов пластины с отверстием при растяжении-сжатии по контуру, цилиндрического стержня с кольцевой выточкой и сильфонно-го компенсатора при заданных осевых перемещениях. Первые два конструктивных элемента, нагруженные заданными максимальными усилиями, имитировали напряженно-деформированное состояние зон концентрации напряжений сосудов давления, работающих при повторных нагрул<ениях внутренним давлением. У сильфонных компенсаторов отсутствуют зоны концентрации напряжений места возникновения максимальных напряжений определяются изгибом гофр, причем повторное нагружение происходит в условиях заданных осевых перемещений. Принятые конструктивные элементы являются характерными и контрастными по условиям нагружения.  [c.202]

Влияние нагрева на напряженно-деформированное состояние при растяжении—сжатии  [c.89]

Таким образом, оказывается, что линейно-упругие и линейно-упруговязкие свойства полимерного связующего ЭДТ-10 при растяжении и сжатии практически одинаковы, но нелинейные свойства более выражены при растяжении. Следует отметить, что зависимость (3.13) дает возможность с достаточной для практики точностью описать кривые ползучести полимерного связующего при простом напряженном состоянии (одноосном растяжении, сжатии или сдвиге). Следует отметить, что в нелинейной области деформирования даже для изотропного материала практически отсутствует единая обобщенная теория напряженно-деформированного состояния.  [c.89]

После изучения напряженного состояния при растяжении и сжатии и результатов опытов над образцами из различных материалов можно перейти к составлению уравнений статической прочности, необходимых для решения трех типов практических задач (см 1). Одним из важнейших типов этих задач является нахождение пло-ш,ади Р сечения, при которой брус обладает наименьшим весом и, не  [c.36]

В этом случае для количественной оценки пластических деформаций, в зависимости от действующих внешних нагрузок, предварительно необходимо установить закономерности снижения предела текучести при переменных нагрузках для простых однородных напряженных состояний (асимметричное растяжение — сжатие, асимметричное кручение, сочетания переменного и постоянного растяжения — сжатия и кручения на полых образцах). Затем, используя аппарат теории пластичности (теорию малых упруго-пластических деформаций, теорию течения), можно установить зависимости между внешними нагрузками и деформациями при рассматриваемых относительно сложных случаях (сочетание изгиба и кручения). Для статических условий совместное действие изгиба и кручения рассматривается в работах [6], [10], [15].  [c.371]

Экспериментальное определение сопротивления деформации при разл ичных термомеханических параметрах производится в большинстве случаев испытанием образцов на растяжение или сжатие. При испытании образцов способом линейного растяжения исключаются факторы, искажающие действительные значения сопротивления деформации. Кроме того, при испытании на растяжение можно сравнительно просто поддерживать постоянной температуру нагретого образца в течение всего процесса деформации. Наиболее достоверные значения сопротивления деформации в условиях линейного напряженного состояния при растяжении можно получить при степени деформации, составляющей не более 20—25%. При больших степенях деформации в рабочей части образца появляется шейка, в которой возникает объемное напряженное состояние. Таким образом, зона деформации непрерывно уменьшается, сосредоточиваясь в области шейки, при этом в остальной части образца напряжения падают. В данном случае влияние объемного напряженного состояния учесть очень трудно, поэтому при степени деформации более 20—25% становится необходимым проводить испытание образцов на сжатие. Проводить эксперименты на сжатие следует очень тщательно, устранив неравномерное деформирование образца и падение его температуры в процессе деформации из-за соприкосновения холодных бойков с образцом, а также предусмотрев уменьшение сил контактного трения. Поэтому сжатие образцов осуществлялось в специальном контейнере, на контактные поверхности образца наносили смазку и регистрировали температуру образца в момент деформации.  [c.8]


Приведение сложного напряженного состояния к равноопасному ему линейному осуществляется заменой главных напряжений а , и О , эквивалентным напряжением, которое надо создать в растянутом образце, чтобы получить напряженное состояние, равноопасное заданному. Прочность оценивают при помощи сравнения эквивалентных напряжений с предельными при растяжении (сжатии) или непосредственно с допускаемыми напряжениями.  [c.196]

По опасным напряжениям устанавливают допускаемые напряжения [04.] при растяжении или [а ] при сжатии (см. 34), обеспечивая известный коэффициент запаса против наступления предельного состояния. Таким образом, условие прочности для одноосного напряженного состояния (рис. 171, а) принимает вид  [c.182]

Расчеты на прочность при одноосном состоянии и чистом сдвиге. При растяжении, сжатии и чистом изгибе брусьев напряженное со-  [c.266]

При наложении на напряженное состояние всестороннего растяжения или сжатия параметр Лоде не изменяется  [c.52]

Большая часть данных по многоцикловой усталости получена при испытаниях на изгиб симметричным циклом с определением о ,. Для ориентировочной оценки пределов выносливости при других видах напряженного состояния можно использовать следуюш,ие соотношения для конструкционных сталей предел выносливости при растяжении — сжатии а- = (0,84-0,9)О-,. при кручении T-i = (0,5H-0,6)a i для алюминиевых сплавов эти коэффициенты составляют 0,85—0,95 и 0,55—0,65 соответственно.  [c.78]

Если все три главных напряжения не равны нулю, то напря-женное состояние называют о б ъ е м н bLM. иди т р е х йх л ы м. Нсл1Глйшь два главных напряжения отличны от нуля, то напряженное состояние называют плоским, или двухосным. И наконец, если лишь одно главное напряжение не равно нулю, то напряженное состояние будет линейным, или одноосным. В частности, при работе бруса на растяжение или сжатие в любой его точке возникает одноосное напряженное состояние. При растяжении не равное нулю главное напряжение должно быть обозначено Oj, а при сжатии — Стд. Заметим также, что при растяжении главная площадка, на которой возникает напряжение Oj, совпадает с поперечным сечением бруса.  [c.225]

В широкой области изменения условий нагружения. Эти испытания включали напряженные состояния при чистом сжатии, растяжении и кручении, а также при различных комбинированных скоростях изменения напряжений. Скорости деформаций менялись в пределах от 10 до 10 с , для этого изменялась скорости нагружения. Были получены экспериментал -  [c.120]

Характеристики разрушения при линейном однородном напряженном состоянии. При однократном статическом нагружении в условиях одноосного равномерного напряженного состояния (осевое растяжение-сжатие) в соответствии со схемами рис. 2 и 4 могут иметь место хрупкие (участок ОА), квазихрупкие (участок АС) и вязкие (СК) разрушения, Для оценки предельных состояняа в этом случае используют характеристики  [c.46]

В зависимости от свойств материала в процессе циклического упруго пластического деформирования пределы текучести (пропорциональности) и форма кривых деформирования могут изменяться. Так, для большого количества металлов и сплавов при растяжении образца напряжением, превышающим предел текучести (пропорциональности), при последующей разгрузке и реверсивном деформировании, т. е. при сжатии, предел текучести (пропорциональности) оказывается ниже исходного. Это явление, шзвапное эффектом Бау-шингера, наблюдается не только при растяжении — сжатии, но и при других видах напряженного состояния.  [c.619]

При исследовании иоиросон прочности и сложном напряженном состоянии существенное значение имеет вид напряженного состояния. Большинство материалов по-разному разрушается н зависимости от того, являются ли напряжения растягивающими или сжимающими. Как показывает опыт, все материалы без исключения способны воспринимать весьма большие напряжения в условиях всестороннего сжатия, в то время как при одноосном растяжении разрушение наступает при сравнительно низких напряжениях. Имеются напряженные состояния, при которых разрушение происходит хрупко, без образования пластических деформаций, а есть такие, при которых тот же материал способен пластически деформироваться,  [c.245]

Основная задача теории предельных напряженных состояний состоит в разработке критерия, позволяющего сравнивать между собой разнотипные напряженные состояния с точки зрения близости их к предельному состоянию. Сравненпе разнотипных напряженных состояний производится с помощью эквивалентного напряженного состояния, причем за эквивалентное берется наиболее изученное напряженное состояние при простом растяжении (сжатии).  [c.238]

Как отмечалось выше, данным условиям не отвечают экспериментальные подходы и моделирующие образцы, используемые дпя анализа напряженно-деформированного состояния тонкостенных оболочковых конструкций. базир тощиеся на схеме испытания плоских образцов в контейнере при растяжении (сжатии)  [c.207]


Смотреть страницы где упоминается термин Напряженное состояние при растяжении (сжатии) : [c.103]    [c.108]    [c.33]    [c.266]    [c.56]    [c.288]    [c.163]    [c.237]   
Смотреть главы в:

Техническая механика 1975  -> Напряженное состояние при растяжении (сжатии)

Методика преподавания сопротивления материалов в техникумах  -> Напряженное состояние при растяжении (сжатии)

Сопротивление материалов  -> Напряженное состояние при растяжении (сжатии)

Сопротивление материалов Издание 8  -> Напряженное состояние при растяжении (сжатии)



ПОИСК



Закономерности длительной прочности при постоянном простом (растяжение, сжатие, сдвиг) напряженном состоянии

Напряжения по наклонным сечениям при осевом растяжении или сжатии (линейное напряженное состояние)

Напряженное и деформированное состояния при растяжении и сжатии

Напряженное состояние образца при ударном растяжении (сжатии)

Напряженное состояние при двухосном растяжении-сжатии

Напряженное состояние при растяжении (сжатии). Обобщен ный закон Гука

Напряженное состояние при растяжении и сжатии (доц канд. техн. наук Е. И. Моисеенко)

Напряженное состояние тонкой пластичной прослойки при растяжении (сжатии)

Область применимости формулы для нормального напряжеАнализ напряженного состояния призматического стержня, подвергнутого чистому растяжению (сжатию)

Плоские течения. Плоское напряженное состояние Осесимметричные задачи. Понятие полного решения. Двойственная формулировка и полное решение. Задача о сжатии — растяжении полосы с отверстием. Задача Прандтля о сжатии слоя Асимптотические задачи

Растяжение (сжатие)

Феноменологические связи между напряженным и деформированным состояниями при испытаниях на растяжение и сжатие



© 2025 Mash-xxl.info Реклама на сайте