Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа подшипников скольжения в условиях гидродинамической смазки

Однако упорные подшипники скольжения, в которых рабочие поверхности подпятников изготовлены из мягких антифрикционных сплавов, в основном работают в условиях граничной смазки только в период пусков и остановок. Так как пуск-остановка разделены промежутком времени работы упорного подшипника в условиях гидродинамической смазки, то эти узлы трения следует отнести к подвижным сопряжениям, характеризующимся нестационарным режимом работы. На основании этого, взаимодействие шипа и подпятника при наличии пластических деформаций в зонах фактического касания их микроиеровностей составляет довольно значительную часть их работы в период пусков и остановок.  [c.192]


До последнего времени развитие методов расчета деталей машин на изнашивание отставало от развития методов расчета на прочность вследствие значительно большей сложности задач, особенно для тех случаев, когда трение происходит в условиях несовершенной смазки. Расчеты подшипников и подпятников скольжения для работы в условиях гидродинамической смазки, основанные на положениях теории, являются, по сун еству, расчетами на отсутствие изнашивания.  [c.51]

К расчетам на износостойкость можно также отнести расчет подшипников скольжения при гидродинамическом режиме трения и смазки — расчет, который должен обеспечить работу подшипника в условиях жидкостного трения. При этом виде трения рабочие поверхности деталей разделены слоем смазки и, таким об-  [c.20]

Расчет посадок с зазором. Для обеспечения долговечности подшипники скольжения должны работать в условиях жидкостного трения, когда смазка полностью отделяет цапфу вала от вкладыша подшипника. В этом случае зазор в подшипниках должен определяться на основе гидродинамической теории смазки.  [c.166]

Таким образом, исследовано экспериментально влияние физико-механических свойств антифрикционных сплавов A M, Св. Бр. и АО-20 на устойчивость протекания гидродинамических процессов и работу трения в подшипниках скольжения разработан метод сравнения антифрикционных качеств трущихся пар в реальных условиях смазки дизельными маслами с помощью диаграмм зависимостей мощности потерь на тре-  [c.84]

Недостаточная надежность при высоких окружных скоростях и динамических нагрузках. При правильной конструкции и качественном исполнении подшипникового узла и при удовлетворительных условиях эксплуатации подшипники качения выходят из строя главным образом вследствие выкрашивания тел и поверхностей качения колец, которое является завершением процесса изнашивания. Между тем подшипники скольжения в фазе трения при жидкостной смазке при соответствующих условиях могут работать неограниченно долго. Поэтому в паровых турбинах, турбогенераторах, мощных скоростных зубчатых передачах, крупных центробежных и осевых насосах и других машинах, предназначенных для весьма длительного срока службы при высоких скоростях, опорами их валов служат гидродинамические подшипники скольжения.  [c.332]

При расчете неподвижные посадки подбирают исходя из следующих условий при наименьшем натяге соединение должно передавать действующие нагрузки, а при наибольшем натяге в материале соединяемых деталей не должны возникать остаточные деформации. Для подшипников скольжения зазор между цапфой и вкладышем подшипника определяют из расчета, основанного на гидродинамической теории смазки. Зазор в опоре должен обеспечивать полное разделение маслом трущихся поверхностей при заданном режиме работы опоры. По расчет-ному значению зазора подбирают стандартную посадку.  [c.102]


Упорные подшипники скольжения используются при небольших осевых нагрузках (когда применение аналогичных подшипников качения по конструктивным соображениям нежелательно) или при очень больших осевых нагрузках, напрн.мер в вертикальных валах гидрогенераторов (когда использование подшипников качения практически невозможно). Упорные подшипники в большинстве случаев работают в режи.ме гидродинамической смазки. При этом изнашивание рабочих поверхностей пяты и подпятника пренебрежимо мало. Однако в период пуска и остановки упорные подшипники, эксплуатируемые в установившемся режиме в условиях гидроди.чамической смазки, работают в условиях граничной смазки. Несмотря на малую продолжительность работы упорных подшипников в режимах пуска и остановки (в сравнении с продолжительностью работы в установившемся режиме), изнашивание поверхностей трения происходит именно в эти периоды. Необходимо также располагать данными об энергетических потерях на трение при работе подшипников в этих режимах, так как высокие потери могут привести к тому, что машину или агрегат невозможно будет запустить.  [c.184]

Примечания 1. Обычные условия применения. 2. Условия, характеризующиеся наличием гидродинамической пленки масла между контактирующими поверхностями колец и тел качения (Л>2,5) и пониженных перекосов в узле. 3. Когда кольца и тепа качения изготовлены из сталей повышенного качества (электрошлаковой или вакуумной) и подшипники работают в условиях наличия гидродинамической плевки масла и пониженных перекосов в узле. 4. Решение задачи гидродниамической теории смазки для подшипников качения слошее, чем д.ля подшипников скольжения, и здесь не рассматривается. Формула для расчета параметра режима смазки Л приведена в [27].  [c.357]

В зависимости от условий трения происходит тот или иной вид изнашивания деталей, оставляя следы на материале. По виду и расположению изнои енной зоны можно, как показал Н. Типей, определить механизм, вызвавший состЕетствующий износ. Для подшипника скольжения трение при гидродинамической смазке не должно вызывать повреждений поверхности в состоянии покоя контакт шипа и вкладыша происходит на узкой площадке контакта (рис. 17.3). Износ подшипника в этом месте незначителен и возможен лишь при недостаточной вязкости мгсла или больших нагрузках, действующих в начале работы. Если к этому добавить корродирующее действие какого-либо агента, то изношенная поверхность приобретает гладкость и блеск. На поверхности можно заметить исчезновение легко реагирующих составляющих (напри ер, свинца). При наличии абразива поЕерхность становится матовой.  [c.259]

В зависимости от конструкции, качества изготовления, условий и режима эксплоатации в подшипнике скольжения имеет место жидкостное, полужид-костное и значительно реже (при не-установившемся режиме работы) граничное или полусухое трение (определение видов трения см. в т. I, стр. 895—896). При вращении подшипника жидкостного трения одна трущаяся поверхность (цапфа) располагается эксцентрично другой (вкладышу, фиг. 04). Образующийся смазочный клин способствует возникновению гидродинамических усилий в смазке, уравновешивающих нагрузку, действующую на подшипник. При этом наименьшее рас-  [c.569]

Ер всех механизмах башенных кранов вращающ,иеся валы и оси опираются на подшипники качения или скольжения. Во время вращения при непосредственном контакте между трущимися поверхностями вала и подшипника развиваются силы трения, которые приводят к повышению температуры обеих деталей и их заеданию. Чтобы уменьшить трение, а следовательно, нагрев и износ, трущиеся по верхности смазьшают. Масло прилипает к деталям и, разъединяя трущиеся поверхности, заменяет сухое трение металла о металл трением внутри масляного слоя. При этом коэффициент трения снижается, улучшаются и облегчаются условия работы деталей. Это явление было открыто русским ученым К. П. Петровым, разработавшим теорию гидродинамической смазки.  [c.289]

Наряду с подшипниками скольжения, в которых используются полимерные материалы, в технике применяют и подшипники с металлическими вкладышами, которые часто работают в условиях граничной смазки. Д аже подшипники, предназначенные для работы в режиме гидродинамической смазки во время пуска и остановки машины, работают в условиях граничной смазки. Поэтому ]]иже приведены зависи)м0стн для вы-  [c.150]


С увеличением скорости скольжения коэффициент трения быстро уменьшается (участок 1—2), при этом трение переходит в полужид-костное, характеризующееся тем, что поверхности скольжения еще не полностью разде /ены слоем смазки, так что выступы неровностей соприкасаются. В точке 2 начинается участок 2—3 жидкостного трения толщина смазочного слоя возрастает от минимальной, достаточной лишь для покрытия всех выступов, до избыточной, перекрывающей все неровности с запасом. При жидкостном трении рабочие поверхности полностью отделены друг от друга, и сопротивление относительному движению их обусловлено не внешним трением контактирующих элементов, а внутренними силами вязкой жидкости. Теоретически наилучшие условия работы подшипника обеспечиваются в точке 2 — здесь сопротивление движению и соответствующее тепловьще-ление наименьшие, но нет запаса толщины слоя поэтому практически оптимальные условия будут в зоне справа от точки 2. Расчет подшипника, работающего в режиме жидкостного трения, выполняется на основе гидродинамической теории смазки. Однако такой режим может быть осуществлен лишь при достаточно большом значении характеристики режима к > Якр, где — значение характеристики режима в точке 2. Для опор тихоходных валов это условие в большинстве случаев не выполняется, а для быстроходных оно нарушается в периоды пуска и останова, когда частота вращения вала мала.  [c.244]


Смотреть главы в:

Детали машин  -> Работа подшипников скольжения в условиях гидродинамической смазки



ПОИСК



Гидродинамическая смазка

Да гидродинамическое

Подшипники Смазка

Подшипники скольжения

Подшипники скольжения смазка

Подшипники скольжения, работающие без смазки

Смазка подшипников скольжени

Смазка скольжения

Условие работы

Условие скольжения



© 2025 Mash-xxl.info Реклама на сайте