Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Строение и свойства реальных кристаллов

Строение и свойства реальных кристаллов  [c.16]

СТРОЕНИЕ И СВОЙСТВА РЕАЛЬНЫХ КРИСТАЛЛОВ  [c.363]

СТРОЕНИЕ И свойства РЕАЛЬНЫХ КРИСТАЛЛОВ  [c.373]

Нарушение правильности строения кристаллов и возможность изменения этих нарушений надо считать таким же неотъемлемым свойством реальных кристаллов, как и правильность их построения из атомов.  [c.32]

Характер и степень нарушения правильности или совершенства кристаллического строения определяют в значительной мере свойства металлов. Поэтому необходимо рассмотреть встречающиеся несовершенства кристаллического строения или, что то же самое, строение реальных кристаллов.  [c.28]


Первоначально Коши и Навье рассматривали твердое тело как систему материальных частиц. При этом каждую пару материальных частиц полагали связанной между собой силами взаимодействия, направленными по прямой, соединяющей их и линейно зависящими от расстояния между частицами. При том уровне, на котором находилась физика в начале XIX столетия, описать таким способом упругие свойства реальных тел не удалось. В настоящее время существуют строгие физические теории, позволяющие определить упругие свойства кристаллов различного строения, отправляясь от рассмотрения сил взаимодействия между атомами в кристаллической решетке. Более простой путь, по которому следует современная теория упругости, состоит в том, чтобы рассматривать распределение вещества тела непрерывно по всему его объему это позволяет перемещения материальных точек принимать за непрерывные функции координат.  [c.31]

Третий период (с пятидесятых годов) связан с появлением гораздо более эффективного, чем рентгеновские лучи, ядерного излучения (быстрые нейтроны, а-частицы и т. д.), что наряду с применением электронной микроскопии и других совершенных методов лабораторного исследования обеспечило возможность более глубокого и всестороннего изучения строения реальных металлов. В кристаллах металлов удалось изменять расположение атомов, создавать там различные дефекты строения и изучать их взаимодействие, от которого зависят важнейшие свойства реальных металлов.  [c.7]

В настоящее время установлено, что реальные кристаллы металлов, в отличие от идеальных, обладают рядом структурных несовершенств или дефектов, т. е. отклонений от правильного геометрического строения. Оказалось, что многие очень важные механические и физические свойства и процессы, происходящие в структуре металлов, тесно связаны с несовершенствами (дефектами) строения их кристаллов, которые обычно разделяют на три группы — точечные, линейные и поверхностные.  [c.20]

Металлы и сплавы, полученные в обычных условиях, состоят из большого количества кристаллов, различно ориентированных в пространстве, т. е. они имеют поликристаллическое строение. Эти кристаллы, обычно называемые зернами, имеют неправильную форму. Каждое зерно имеет свою ориентировку кристаллической решетки, отличную от ориентировки соседних зерен, вследствие чего свойства реальных металлов усредняются и явление анизотропии не наблюдается. Размер зерен бывает различным — от 1 до О ООО мкм, чаЩе всего около 100 мкм. Зерна разориентированы, повернуты относительно друг друга на десятки градусов (рис. 39). На границах между  [c.93]


Строение реальных кристаллов. Исследованиями структур кристаллов доказано, что указанные выше кристаллические решетки являются идеальными кристаллами. Реальные кристаллы имеют значительные отклонения в строении решетки (фиг. 5). Причины, вызывающие искажение кристаллической решетки, различны температурные условия, при которых образуются кристаллы (нагрев и скорость охлаждения, условия охлаждения), напряжения в металле, вызываемые механическими воздействиями. При этом происходят смещения атомов в кристалле, называемые дислокациями, образуется решетка с узлами, не заполненными атомами (фиг. 6). Эти дефекты в кристаллической решетке приводят к резкому ухудшению свойств металлов, особенно механических, благодаря чему область  [c.11]

Металлы и сплавы, полученные в обычных условиях, состоят из большого количества кристаллов, различно ориентированных в пространстве, т. е. они имеют поли-кристаллическое строение. Эти кристаллы, обычно называемые зернами, имеют неправильную форму. Каждое зерно имеет свою ориентировку кристаллической решетки, отличную от ориентировки соседних зерен, вследствие чего свойства реальных металлов усредняются и явление анизотропии не наблюдается.  [c.120]

Исследование строения металлов при помощи электронного микроскопа и рентгеновский анализ показали, что строение реальных кристаллов металлов в отличие от идеальных характеризуется большим количеством несовершенств (дефектов), влияющих на свойства металлов. В ряде случаев искажение кристаллической решетки вызывается дислокациями — нарушениями правильного кристаллического строения вследствие отклонения отдельных атомов или их групп от положения устойчивого равновесия. Дислокации возникают в процессе кристаллизации металла из расплава.  [c.61]

Представления о природе субструктуры стали значительно более ясными после появления теории дислокаций, позволившей объяснить наклон участков кристаллической решетки наличием скоплений дислокаций (см. стр. 88). Вопрос был дополнительно разъяснен после объяснения возникновения дислокаций и системы их расположения в процессе кристаллизации металла. Таким образом, постепенно составилось представление о субструктуре, как о естественной форме строения кристалла металла, насыщенного дислокациями. Кристалл не состоит из атомных плоскостей кристаллической решетки, равномерно уложенных во всем его объеме. Реальный кристалл состоит из участков решетки, наклоненных, повернутых и смещенных один относительно другого (см. рис. 110, 111). Субструктура этого типа определяется распределением дислокаций в объеме тела и оказывает существенное влияние на механические свойства металлов.  [c.141]

Дефекты в реальных кристаллах искажают кристаллическую решетку, оказывают существенное влияние на все свойств материала, поэтому знание дефектного строения и управление им при создании материалов и изделий имеет большое значение.  [c.34]

СТРУКТУРНЫЕ НЕОДНОРОДНОСТИ (дефекты) в металлах и сплавах — локальные нарушения правильности строения решетки. С. н. всегда присутствуют в реальных кристаллах и определяют многие их фи н1ч. свойства. С. п. делятся на а) точечные (напр., вакансии, атомы растворенного вещества в твердых растворах внедрения и замещения и т. и.)  [c.97]

Дефекты кристаллического строения. Реальный металлический кристалл всегда имеет большое количество дефектов кристаллического строения, которые нарушают периодичность расположения атомов в кристаллической решетке. Дефекты оказывают значительное влияние на свойства металла. По геометрическим признакам они подразделяются на точечные, линейные и поверхностные.  [c.12]

Обобщены физико-химические представления о свойствах и строении кристаллов как реальных твердых тел с дефектной структурой. Рассмотрены поверхностные свойства твердых тел, а также влияние поверхностных явлений на рост кристаллов и на их механические свойства. Большое внимание уделено механохимии, которая изучает протекание- химических реакций в условиях механической активации.  [c.4]


В первой части (гл. 1—11) освещены известные, классические представления о строении кристаллов и. их свойствах. Изложены основные положения о симметрии кристаллов и о типах кристаллических решеток. Далее автор переходит к описанию термических и калорических свойств кристаллов и квантовомеханическому расчету теплоемкости кристаллов по Эйнштейну и Дебаю. В книге подробно развит термодинамический метод анализа важнейших свойств кристаллов, в особенности, для определения условий фазовых равновесий и полиморфных превращений. Последовательная термодинамическая трактовка проходит через все разделы книги и составляет в известном смысле ее логический стержень. Наряду с термодинамическими расчетами в ряде случаев используются методы, основанные на приближенной оценке межатомных взаимодействий. В этих главах сообщаются также элементарные сведения о кинетических закономерностях важнейших процессов, происходящих в кристаллах, в том числе—о процессах диффузии. Наконец, дается представление о реальной структуре кристаллов и о видах структурных дефектов.  [c.11]

Изотропность. Изотропной называется среда, свойства которой не зависят от направления. Обычно изотропия не является следствием правильного строения среды, а возникает как статистический результат беспорядочного расположения ее элементов. Так, кристаллы анизотропны, но реальные поликристаллические материалы (например, металлы) представляют собой совокупность случайным образом ориентированных кристаллических зерен — элементов, имеющих почти правильное строение. В результате тело, достаточно большое по сравнению с кристаллическим зерном (в некоторых сплавах размер зерна может достигать долей миллиметра), оказывается изотропным. Вместе с тем анизотропия в малом приводит к неравномерности напряжений и может оказать существенное влияние на быстро изменяющиеся составляющие упругой волны. Точность результатов, определяемых в предположении об изотропности применительно к областям больших градиентов напряжений (т. е. там, где напряжения существенно меняются на расстоянии порядка размера зерна), становится проблематичной.  [c.16]

В реальных металлах нет идеально правильного расположения атомов во всем объеме кристалла, т.е. в них всегда имеются дефекты кристаллического строения. Необходимо знать основные виды ДКС и влияние их на свойства металлов. При этом особое внимание следует уделить дислокациям.  [c.5]

Учение о дислокациях получило в настоящее время широкое развитие, подробно разрабатываются вопросы теории, методы выявления несовершенств этого типа и приложения теории к различным вопросам металлофизики и металловедения. Именно эта группа вопросов, с одной стороны, объясняющая особенности строения и свойства реального кристалла, а с другой — оперирующая физико-математическим аппаратом, дала много точек соприкосновения для металлофизиков и металловедов. Основные представления теории дислокаций изложены в специальных монографиях и обзорах, например [16, 17, 19, 49—53, 429] некоторые приложения рассмотрены в главе VHl, поэтому здесь они рассматриваться не будут.  [c.71]

В связи с такими глубокими изменениями, происшедшими в металловедении к термической обработке, оказалось необходимым предпринять новое издание Справочника, в котором отразились бы современные тенденции в развитии этих отраслей знаний. Естественно, что весь материал Справочника переработан с учетом последних, достижений отечественной и зарубежной науки и техники. Введены новые главы Теория диффузич , Мартенситные превращения , Строение и свойства реальных кристаллов , Полиморфные превращения , Наклеп , Отдых и рекристаллизация и др. В связи с развитием физических методов изучения металлических сплавов значительно расширен раздел Методы испытаний и исследований . В него включены новые главы Радиоспектроскопия чистых металлов и сплавов , Метод радиоактивных изотопов , Интроскопия металлов и др.  [c.12]

ГЕТЕРОФАЗНАЯ СТРУКТУРА твёрдых тел — пространственное распределение кристаллич. фаз, составляющих многофазное кристаллич. твёрдое тело. Размеры, форма и взаимное расположение фаз, распределение и строение межфазных границ, наряду с внут-рифазпыми дефектами, определяют мн. фяз. свойства реальных твердотельных материалов. Физ. свойства гетерофазного тела не являются аддитивной суммой свойств его фаз из-за межфазных границ и внутр. напряжений, возникающих при контакте разл, фаз. В результате фазовых превращений в исходной фазе возникают отд. области или кристаллы новых, термодинамически более устойчивых фаз, к-рые растут, взаимодействуют, образуя Г. с. Воздействуя на ход 450 структурного фазового превран ения, можно в одном и  [c.450]

КРИСТАЛЛОФИЗИКА — область кристаллографии, изучающая связь фия. свойств кристаллов и др. анизотропных материалов (жидких кристаллов, поликрис-таллич. агрегатов) с их симметрией, атомной и реальной структурой и условиями получения, а также иамеие-ния свойств под влиянием внеш. воздействий. К. использует симметрию кристаллов как метод изучения закономерностей изменения свойств объектов, общие закономерности, установленные физикой твёрдого тела и связывающие атомное строение и электронную структуру со свойствами кристаллов.  [c.514]

В К, изучается и влияние реальной структуры па фп з. свойства кристаллов. К дефектам структуры чувствительны мн. свойства кристаллов электропроводность, механич., оптич. и др. свойства. Важнейшие задачи К.— установление зависимостей иаменеш1Я физ. свойств кристаллов от их состава, строения и реальной структуры, а также поиск способов управления свойствами материалов и создание новых структур (текстур и композитных материалов) с оптим. сочетанием ряда Boii TB для практич. применения.  [c.515]


В 1.2 были рассмотрены принципы, которые лежат в основе строения кристаллов. Однако идеальное построение рещетки, характеризующееся трехмерной периодичностью, не может быть реализовано при нормальных давлениях р и температурах Т. Различные отклонения от идеальной структуры приводят к реальной структуре. Исследование реальной структуры представляет сегодня очень важное научное направление в кристаллофизике и кристаллохимии, так как подавляющее большинство химических, физико-химических, электрических, магнитных, механических и других свойств кристаллов зависит от их реальной структуры. Поэтому целесообразно говорить о свойствах, чувствительных к нарушениям структуры [структурно-чувствительных свойствах) и свойствах, нечувствительных к таким нарушениям.  [c.208]

Локальные песовершенства (дефекты) в строении кристаллов пр11сущи всем металлам. Эти нарушегтя идеальной структуры твердых тел оказывают существенное влияние на нх физические, химические, технологические и эксплуатационные свойства. Без использования представлений о дефектах реальных кристаллов невозможно изучить явления пластической деформации, упроч-нени.е и разрушение сплавов и др.  [c.9]

Так, Смекалом был выполнен ряд интересных исследований, посвященных главным образом изучению свойств прочности кристаллов галоидных солей щелочных металлов. Им и другими авторами было показано, что пластическая деформация ведет к разрыхлению решетки [23, 64], дана оценка перенапряжений на неоднородностях кристалла [65, 66], выяснено влияние примесей на свойства прочности галоидных солей [50—52], исследована температурная зависимость прочности [67, 68, 54], изучено влияние среды на прочность [54]. Смекал пытался также дать общие представления о причинах разрушения кристаллов, которые мы здесь кратко изложим. Он перенес на кристаллы целиком представления Гриффитса. Далее [22, 23] высказал предположение о том, что строение реальных криста.илов существенно отличается от идеальных. У реальных кристаллов имеются нарушения решетки, которые могут возникнуть по ряду причин в результате неправильности роста кристалла, наличия примесей и т. д. Существование в кристалле подобного рода нарушений может оказать заметное влияние на ряд его свойств и, в частности, на структурно-чувствительные свойства (например, на ионную проводимость, свойства прочности и т. д.).  [c.28]

Реальные тела обладают такими механическими свойствами (способность изменять расстояния между точками под действием сил), которые в пределах даже малого объема при переходе от точки к точке изменяются. Более того, если в окрестности ка-кой-либо точки выделить малый объем, то в пределах этого объема можно выделить участки, различные по своим механическим свойствам. Это связано с особенностями микроструктуры тел. Например, в конструкционных материалах можно выделить микрокристаллические об]эазования, которые объединяются между собой по границам этих микрокристаллов, по-разному между собой ориентируясь, в кристаллы. Последние объединяются в зерна со сложной границей. Такая картина вносит в строение материалов различные неоднородности, от которых следует абстрагироваться, что и делается в механике твердого тела введением понятия однородности структуры, которая состоит в том, что в малой окрестности любой точки тела строение однородно и не зависит от размеров малого объема, включающего эту точку. В более детальном описании гипотеза структурной однородности состоит в том, что реальное тело с его сложной микроструктурой, которую определяют расположение атомов н кристаллических решетках, взаимное расположение микрокристаллических образований, объединяющихся в зерна, и т. д., заменяют средой, не имеюш,ей структуры, свойства которой равномерно распределены в пределах любого малого объема. Это эквивалентно тому, что, выделив малый объем тела, его структурные элементы мысленно измельчают до бесконечно малых частиц и потом этой измельченной средой вновь заполняют прежний объем, т. е. в этом однородном теле нет никакой возможности выявить в любом малом объеме какую-либо структуру строения материала. Однако в механике твердого тела рассматривают такие неоднородные по структуре тела, которые состоят из конечного числа конечных объемов, занятых структурно однородными телами. Например, железобетон, в котором бетон и металл порознь считаются однородными, но они занимают конечные объемы. В то же время в механике твердого тела различают однородные и неоднородные тела в том смысле, что механические свойства тел могут быть некоторой функцией коордииат точки (неоднородность механических свойств), хотя в окрестности каждой точки однородность строения сохраняется. Тело будет механически однородным, если его механические свойства не зависят от координат выбора точки тела.  [c.19]

При образовании дефектов решетки в кристаллах металла нарушается межатомная связь, уменьшается одновременное участие атомов в сопротивлении деформации, понижается степень использования межатомной связи, что приводит к снижению прочностных свойств металла. Схематически эта зависимость показана на рис. 7. Чем больше дефектов решетки и чем глубже нарушено строение решетки, тем ниже прочность металла. В реальных поликристаллических металлах снижение прочности вызывают не только дислокации, граничащие с монокристалликами, т. е. блоками или областями когерентного рассеяния рентгеновских лучей, но и другие дефекты решетки, расположенные на границах зерен, субзерен, инородных включений и т. п.  [c.39]

В 1822 и 1823 гг. великими Навье и Коши были представлены в Парижскую академию научные трактаты, или, как их тогда называли, мемуары, положившие начало двум подходам к рассмотрению механических свойств твердых тел. Первый, основанный на рассмотрении тела как системы взаимодействующих между собой молекул, привел к довольно строгим физическим теориям механических свойств кристаллов различного строения. Второй же, так называемый континуальный подход, заключался в замене реального тела воображаемой сплошной средой, непрерывно заполняющей пространство. Уравнения равновесия ее были получены Коши с помощью предложенного Эйлером метода выделения элементарного объема и рассмотрения действующих на него сил. Для описания поведения сплошной среды постулируются определяющие уравнения. Полученная модель такой среды считается пригодной для расчета процессов в некоторых реальных телах, если результаты этого расчета с достаточной точностью соответствуют результатал макроскопического эксперимента, в ходе которого измеряются механические величины, входящие в уравнения. Такие модели называются феноменологическими, они составляют основу механики сплошных сред.  [c.34]

Проблема еще более усугубляется тем, что реальные среды практически никогда не бывают однородными и населенными лишь дислокациями или точечными дефектами. На развитых стадиях деформации кристаллы характерЮуются сложным иерархическим строением, часто состоят из зерен, фрагментов, ячеек и блоков, включений различной природы и пр. Опыт показывает, что в таких кусочных средах, составленных из фрагментов разного масштаба, в том числе и содержащихся друг в друге , кроме виутрифрагментного массопереноса происходят интенсивные относительные смещения и повороты частей материала как целого, движение межфазных и межфрагментных границ и т. д. Попытки описать и понять эти явления в терминах классических представлений крайне непродуктивны. Однако главное заключается в том, что законы эволюции этих систем носят, если так можно выразиться, самостоятельный характер и непосредственно не вытекает из свойств одиночных решеточных дефектов, например, типа дислокаций и даже дисклинаций.  [c.4]



Смотреть страницы где упоминается термин Строение и свойства реальных кристаллов : [c.102]    [c.29]    [c.28]   
Смотреть главы в:

Материаловедение  -> Строение и свойства реальных кристаллов



ПОИСК



28—31 — Строение

Кристаллы свойства

РАЗДЕЛ И СТРОЕНИЕ СТАЛИ Строение и свойства реальных кристаллов (И. А. Одинг)

Реальное строение металлических кристаллов Анизотропия свойств кристаллов

Реальные кристаллы

Реальный газ

Строение и свойства

Строение реальных тел



© 2025 Mash-xxl.info Реклама на сайте