Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электроприводы Леонарда

Электроприводы машин Леонарда 8 — И Переходные режимы 8 — 45  [c.360]

Электроприводы постоянного тока — Автоматизация ускорения по принципу обратной э. д. с. 8 — 65 ------- Леонарда 8 — 11 Механические характеристики 8 — 12 ----ионные 8—13 Механические характеристики 8— 13  [c.360]

Система Леонарда и её ва- д рианты. Электропривод постоян-кого тока по системе Леонарда [21] является луч- 80 шим типом регулируемых электро- 120 приводов по пределам регулиро- цд вания (нормально 80 itO О kO В0Д%  [c.11]


По системе Леонарда независимо от способа возбуждения могут питаться двигатели постоянного тока. Однако наиболее часто используется двигатель независимого возбуждения. Механические (рабочие и тормозные) характеристики электропривода по системе Леонарда для двигателя с независимым возбуждением приведены на фиг. 19.  [c.12]

Фиг. 19. Механические характеристики электропривода по системе Леонарда. Фиг. 19. <a href="/info/460130">Механические характеристики электропривода</a> по системе Леонарда.
Ионный электропривод постоянного тока и его механические характеристики. Электропривод этого типа состоит из ионных выпрямляющих аппаратов и двигателя постоянного тока. Для выпрямления переменного тока при больших мощностях двигателей используются ртутные выпрямители с регулируемой сеткой, при меньших мощностях — тиратроны (стеклянные или металлические) и игнитроны. Подводимое к двигателю напряжение ионных аппаратов можно регулировать в широких пределах, изменяя момент зажигания игнитронов посредством подачи соответствующих потенциалов на сетки ртутных выпрямителей или тиратронов. Этим создаётся возможность производить пуск и широко регулировать скорость так же, как и в системе Леонарда. Пределы регулирования скорости двигателя — от 1 20 и выше.  [c.13]

Переходные режимы в электроприводе по системе Леонарда. В системе Леонарда, в которой переходные процессы привода ведутся изменением тока возбуждения генератора, электрические переходные процессы имеются не только в цепи якоря, но и в цепи возбуждения генератора. Так как эта цепь обладает большой самоиндукцией, оказывающей весьма существенное влияние на работу электропривода, в особенности на быстроту операций, т. е. на производительность, то в системе Леонарда совершенно обязательно учитывать электромеханические переходные режимы.  [c.45]

При ёмкости ковшей до 1,7 широко, а при ёмкости до 1,5 почти исключительно применяется одномоторный привод, в котором дизель (наиболее часто) или карбюраторный двигатель может быть заменён электромотором без смены редуктора. При = l-f-l,5 <3 редко, чаще при =1,5и почти исключительно при g > 2 применяется многомоторный электропривод (обычно системы Леонарда). В исключительных случаях при q = = 1 применяется дизель-электрический, а при q = 0,75 -4-1 — дизель-пневматический привод.  [c.1159]


На некоторых крупных экскаваторах применяется управление током возбуждения специального возбудителя для генератора (системы амплидин и др., см. главу Электропривод машин", т. 8), что ещё больше облегчает работу машиниста и даёт добавочные преимущества (большая чёткость работы и быстрота реагирования на импульсы управления по сравнению с системой Леонарда).  [c.1168]

В некоторых быстроходных лифтах с большим количеством включений и изменений направления движения привода при необходимости широкого предела регулирования (10 1 и более) и плавного перехода от одной скорости к другой используется более сложная система электропривода (фиг. 69) с несколькими двигателями. В этой системе, носящей название системы двигатель — генератор (системы Леонарда), первичный двигатель ПД переменного тока, получая питание от внешней сети, приводит во вращение генератор Г постоянного тока, питающий исполнительный двигатель РД постоянного тока лифтовой лебедки, и возбудитель В, питающий обмотки возбуждения генератора и исполнительного двигателя. Регулирование числа оборотов двигателя РД достигается изменением напряжения в цепи обмотки возбуждения генератора Г (с помощью  [c.67]

Специальная модернизация строгальных станков путем применения гидропривода или электропривода Леонардо позволяет довести скорости резания до 60—70 м1мин. В таких конструкциях можно применять резцы, оснащенные пластинками сплава Т5К10 по стали  [c.321]

Первым шагом в этом направлении в СССР явилась разработанная в 1955 г. система автоматического регулирования уровня жидкой стали в кристаллизаторе установки непрерывного литья завода им. 1 Мая МЭС СССР [4]. В этой установке управление уровнем осуществляется путем изменения скорости вытягивания слитка. Кристаллизатор имеет форму цилиндра с внутренним диаметром 55 мм. Электропривод тянущих валков установки представляет собой систему Леонарда (Д-Г-Д). Регулирование скорости вращения валков осуществляется путем изменения сопротивления реостата, включенного в цепь возбуждения генератора. Датчиком уровня является десятиканальный релейный уровнемер, построенный на ячейках рис. 5.  [c.251]

К характеристикам, получаемым в системе при постоянном потоке двигателя и Ug-= = var (1—6, фиг. 19), обычно добавляются характеристики при постоянном напряжении генератора = onst и при переменном потоке возбуждения двигателя ф = уаг (7—13, фиг. 19). Эти характеристики используются для более высоких скоростей при расширении диапазона регулирования скорости. Строго говоря, они уже не будут параллельны характеристикам при Ug= var однако в масштабе графического изображения на фиг. 19 они могут считаться параллельными. Характеристики ниже оси абсцисс соответствуют обратному направлению вращения двигателя. Система Леонарда позволяет осуществить весьма плавное торможение с непрерывной рекуперацией энергии до самых малых скоростей. Переход от одной характеристики к другой при пуске производится постепенной перестановкой вручную или автоматически сначала реостата цепи возбуждения генератора (усиление его поля), а затем реостата цепи возбуждения двигателя (ослабление поля двигателя). Простота получения большого числа ступеней в цепи возбуждения генератора обеспечивает возможность исключительно плавного пуска электропривода. Торможение в ней производится в обратном порядке. Сначала повышается ток возбуждения двигателя до максимального значения, а потом уменьшается ток возбуждения генератора до минимального значения. При этом машина-двигатель почти всё время работает на генераторных тормозных характеристиках, так как э. д. с. двигателя оказывается больше э. д. с. генератора и ток идёт из двигателя в генератор.  [c.13]

Выбор рода тока для электроприводов. На районных электрических станциях энергия генерируется в форме переменного тока и на промышленные предприятия подаётся трёхфазный ток. Поэтому во всех случаях, где применение двигателей постоянного тока не вызывается производственной необходимостью, следует устанавливать электродвигатели трёхфазного тока. Потребность в двигателях постоянного тока может возникать I) при широком и плавном регулировании скорости, 2) при большом числе пусков в час и вообще при напряжённом повторно-кратковременном режиме 3) при работе электроприводов по специальному графику скорости, пути 4) при необходимости в особой плавности пуска и торможении, перехода от одного рабочего процесса к другому 5) при необходимости кроме основных, рабочих, получить и заправочные скорости механизмов. Краткое сопоставление различных электрических типов электродвигателей в отношении регулирования скорости дано в табл. 4, из которой видно, что во всех тех случаях, где требуется плавное регулирование скорости в пределах 1 3 и выше, наиболее целесообразно применять двигатели постоянного тока или систему Леонарда, а в малых мощностях электронноионный привод. Последний в эксплоатационном отношении достаточно не изучен. При ступенчатом регулировании до 1 4 преимущественно при малых мощностях (особенно в металлорежущих станках) могут быть использованы короткозамкнутые асинхронные двигатели с переключением полюсов. Коллекторные двигатели переменного тока в указанных пределах экономичны в основном лишь при установке  [c.20]


Крупная промышленность выдвинула к концу XIX в. ряд совершенно новых требований к ведению самого производства. Увеличилась его сложность и точность, произошло ускорение темпов технологических процессов, развились непрерывные виды производства, расширились площади промышленных предприятий — все это усложнило задачу управления системой машин. В ряде случаев человек оказывался не в состоянии справиться с механическими операциями без специальных дополнптельных средств. Ярким примером такого производства стала металлургическая промышленность. В начале 90-х годов электрический привод проникает на металлургические заводы США для производства проката и для осуществления загрузки мартеновских и доменных печей. В этот период зарождается автоматическое управление процессами пуска, торможения, остановки и скоростью электродвигателей с помощью релейно-контакторной аппаратуры, а также появляются схемы электромашинной автоматики. Предвестником электромашинной автоматики следует считать изобретение русского электротехника В. Н. Чиколева — его дифференциальную лампу с электродвигателем для регулирования положения углей в дуговой лампе (1874 г.) [31]. Следующим шагом на пути к электромашинному регулированию была схема генератор — двигатель М. О. Доливо-Добро-вольского (1890 г.) для электродвигателей с сериесным возбуждением, с помощью которой обеспечивалась примерно постоянная скорость вращения при значительных изменениях нагрузки [28, с. 2151. В 1892 г. американский инженер В. Леонард предложил способ плавного и в широких пределах регулирования по схеме генератор — двигатель, ставшей классической [32]. Она нашла широкое применение для электропривода прокатных станов и подъемников начиная с 1903 г., когда немецкий инженер К. Ильгнер сделал дополнение к схеме Леонарда в виде махового колеса для выравнивания толчкообразной нагрузки. Эту систему электромашин-ного управления используют до настоящего времени.  [c.62]

Испытательная машина ИМ-ВИИПП-80 (рис. 91) отличается от предыдущей наличием промежуточных зубчатых ускорителей с передаточными числами 1 2 и 1 25,43, что (при наличии схемы Леонарда) позволяет избежать применения высокочастотного электропривода.  [c.144]

А. Гекстильнан промышленность. I) Электрические центрифуги для пряши п = 6 ООО до 15 ООО об/мин. Каждый ватер имеет ок. 60—100 отдельных двигателей. Двигатели с короткозамкнутым ротором для частоты 100—250 Hz. Специального устройства для обеспечения согласованного вращения нет. Технологически параллельная работа. 2) Рогульчатый ватер с электроприводом. Вертикальные двигатели с полным валом, через к-рый проходит нить п = = 2 ООО—6 ООО об/мин. Каждый ватер имеет 40—200 двигателей, регулируемых помощью преобразователя частоты, без специального регулирования согласованности вращения. Технологически параллельная работа. 3) Комплект чесальных машин. Согласованность работы, разбега и выбега обеспечивается асинхронными двигателями с роторами, соединенными между собой и о общим реостатом. 4) Отдельные машины. Непрерывный согласованный привод машин для мерсеризации, машин для набивки тканей, машин для отбелки и т. ц. Многомоторный привод постоянного тока по схеме Леонарда или трехфазными шунтовыми коллекторными двигателями с регулировкой сдвигом щеток. Регулировка согласованного вращения от руки или автоматически вспомогательным валиком, положение которого зависит от длины петли материала мешду приводами.  [c.132]


Смотреть страницы где упоминается термин Электроприводы Леонарда : [c.13]    [c.455]    [c.1069]   
Машиностроение Энциклопедический справочник Раздел 4 Том 8 (1949) -- [ c.11 ]



ПОИСК



Электропривод

Электроприводы машин Леонарда



© 2025 Mash-xxl.info Реклама на сайте