Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химический под давлением 6 - 209 -

Элементы химические — Давления паров  [c.499]

Днища 1У-Й группы. К этой группе относятся сферические днища, применяющиеся в котлостроении, химическом и нефтяном машиностроении, при изготовлении сосудов высокого давления и в конструкциях, где имеют место гидростатическое давление, а также в тех случаях, когда нужно обеспечить сопротивление удару под различными углами атаки.  [c.7]

Это выражение очень часто используется в расчетах, так как огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах, камерах сгорания газовых турбин и реактивных двигателей, теплообменных аппаратах), а также целый ряд процессов химической технологии и многих других осуществляется при постоянном давлении. Кстати, по этой причине в таблицах термодинамических свойств обычно приводятся значения энтальпии, а не внутренней энергии.  [c.18]


Непрерывная продувка служит для удаления солей из контура циркуляции котла вместе с небольшим количеством воды. Соли накапливаются в котловой воде в процессе превращения воды в пар, практически не растворяющий солей и не уносящий их с собой. Поскольку продувка осуществляется отводом части котловой воды, то с ней уходит значительное количество теплоты. Поэтому вода продувки (т. е. часть котловой воды) отводится в сосуд с меньшим давлением (расширитель или сепаратор непрерывной продувки), где она оказывается перегретой по отношению к этому давлению и вскипает. Полученный пар не растворяет в себе солей и может быть использован как теплоноситель. Оставшаяся горячая вода уже с меньшей температурой, но с большим содержанием солей, также может быть использована как теплоноситель, например, для нагрева химически очищенной воды, идущей на подпитку котла.  [c.217]

Использование в качестве охладителя инертного газа гелия. Уже при давлении 4—5 МПа гелиевый теплоноситель обеспечивает хорошие условия теплоотвода и позволяет достичь объемной плотности теплового потока на уровне 6—8 кВт/л при сравнительно умеренной потере энергии на прокачку теплоносителя. Гелий как теплоноситель имеет по сравнению с другими газами ряд преимуществ высокую теплоемкость и теплопроводность, термическую и радиационную стойкость, химическую стабильность и инертность к конструкционным материалам, минимальное сечение поглощения нейтронов.  [c.3]

Внедрение высоких- давлений позволяет осуществить многие химические процессы, которые не могли быть осуществлены при обычном давлении, как, например, синтез аммиака и метанола, гидрогенизацию углеводородов, гидратацию этилена и пропилена, синтез мочевины и муравьиной кислоты, полимеризацию этилена и др. Анализируя влияние давления на изменение условий применения псевдоожиженного слоя в различных процессах, следует указать, что повышенное давление позволяет использовать твердое мелкодисперсное вещество или в качестве непосредственного объекта химические) превращений при контакте его с газовым потоком, или в виде катализатора, адсорбента или твердого теплоносителя.  [c.4]

В промышленности в больших количествах вырабатывают и потребляют простейший из эпоксидов -—окись этилена. Окисление этилена, исходного сырья для получения этиленгликоля, растворителей, пластмасс и других химических продуктов, осуш,ествляется кислородом воздуха на серебряном катализаторе. Процесс окисления ведется под давлением 0,9—2,0 МПа при температуре 260—290 °С, если окислитель воздух, и при 230 °С, если окислитель кислород. Интенсивный отвод реакционного тепла в этом процессе весьма важен, так как при температуре выше 300 °С ускоряется реакция полного окисления этилена до двуокиси углерода и воды. Возможность эффективного съема тепла, образующегося при реакции, является одним из самых сложных вопросов при промышленном осуществлении процесса.  [c.9]


Теплота может быть полностью превращена в работу при непериодическом процессе при периодическом процессе, она может быть превращена в работу только частично. Непрерывное превращение теплоты в работу требует применения циклических процессов с периодическим возвращением к первоначальному состоянию. Для того чтобы получить максимальное превращение теплоты в работу, все стадии в цикле должны быть обратимы. Простейшим возможным циклом считается тот, в котором количество теплоты поглощается обратимо из единственного источника при температуре Ti. При этом теплота частично превращается в работу, а частично передается обратимо единственному теплоприемнику при температуре Та, которая обязательно должна быть меньше температуры Т . Стадии изотермического переноса теплоты могут состоять из расширения или сжатия газа при постоянной температуре с помощью сдвига фазового равновесия системы, когда температура и давление остаются постоянными, или сдвига химического равновесия газовой системы путем изменения давления  [c.196]

Если независимые переменные — температура и давление, то химический потенциал компонента i в одной из фаз многокомпонентной многофазной системы можно выразить через свободную энергию Гиббса  [c.238]

Интеграл в уравнении (8-40) выражает разность между химическим потенциалом компонента в растворе и химическим потенциалом компонента в идеальном растворе при тех же составе, температуре и давлении. Он был назван избыточным химическим потенциалом или избыточной парциальной мольной свободной энергией , определяемой соотношением  [c.241]

Таким образом, при данной температуре уравнение (8-47) показывает, что величина х р или парциальное давление смеси идеальных газов может служить мерой химического потенциала.  [c.242]

Материальный баланс для данной системы можно установить, рассматривая систему вначале как гомогенную фазу, жидкость или пар, которая разделяется на две фазы с изменением температуры или давления. При отсутствии химической реакции материальный баланс можно выразить через число молей  [c.287]

При решении задач по химическому равновесию системы прежде всего необходимо определить стандартное состояние для каждого компонента. При рассмотрении систем с химическим равновесием следует выбрать такое стандартное состояние, при котором фугитивность равнялась бы единице для каждого чистого компонента при температуре реакционной системы. Давление в таком стандартном состоянии будет различным для каждого чистого компонента.  [c.293]

Даже если константа химического равновесия не зависит от давления, возрастание давления от 1 до 300 атм увеличит степень превращения окиси углерода и водорода от незначительной величины до 61 %. Вычисленный равновесный состав реакционной смеси на основании закона идеального газа приведен ниже  [c.302]

Во многих реакционных системах возможно протекание более чем одной химической реакции с теми же исходными веществами при данных температуре и давлении. Это особенно характерно для систем, включающих органические соединения. В тех случаях, когда в различных реакциях участвуют общие исходные вещества  [c.304]

Регенеративные теплообменники непрерывного действия с дисперсным промежуточным теплоносителем применимы в различных областях техники в энергетике, химической промышленности, металлургии, в горно-обогатительном деле, в промышленности стройматериалов и пр.,Во многих случаях наряду с процессом теплообмена имеет место и массообмен. Основное ограничение в использовании подобного регенеративного принципа возникает при значительном перепаде давления между  [c.366]

Все металлы в твердом состоянии имеют кристаллическое строение. Атомы в твердом металле расположены упорядоченно и образуют кристаллические решетки (рис. 1.1). Расстояния между атомами называют параметрами решеток и измеряют в нанометрах, С повышением температуры или давления параметры решеток могут изменяться. Некоторые металлы в твердом состоянии в различных температурных интервалах приобретают различную кристаллическую решетку, что всегда приводит к изменению их физико-химических свойств.  [c.5]


Вулканизацию — завершающую операцию при изготовлении резиновых деталей — проводят в специальных камерах (вулканизаторах) при температуре 120—150 °С в атмосфере насыщенного водяного пара при небольшом давлении, В процессе вулканизации происходит химическая реакция серы и каучука, в результате которой линейная структура молекул каучука превращается в сетчатую, что уменьшает пластичность, повышает стойкость к действию органических растворителей, увеличивает механическую прочность.  [c.438]

Агрегаты всего завода связаны между собой системой электрического управления и снабжены блокировочными устройствами, выключающими соответствующие агрегаты при отклонении от нормального хода производственного процесса. Одновременно с остановкой агрегата над ним автоматически включается световое сигнальное устройство, и этот сигнал одновременно дублируется на диспетчерском пункте. Кроме того, ряд устройств автоматически регулируют некоторые параметры производственного процесса температуру, химический состав, давление и т. д.  [c.468]

Рост окисной пленки во времени по законам (ИЗ) и (116) имеет место при соизмеримости торможений химической реакции окисления металла и диффузионных процессов в окисной пленке (окисление железа в водяном паре и углекислом газе, окисление чистой поверхности кобальта в кислороде, окисление меди в кислороде при низком давлении и др.), а также при окислении ряда металлов при высоких температурах, которое сопровождается частичным разрушением защитной окисной пленки.  [c.65]

К внешним факторам относятся химическая природа растворителя природа и концентрация ионов в растворе природа и концентрация растворенных газов и других неионизирующих веществ температура давление движение раствора вторичные и защитные пленки и др.  [c.178]

Воздействие ультразвука на химические, в том числе и корро-зионны. процессы, связано не только с чрезвычайно сильным перемешиванием жидкой среды (особенно в режиме кавитации), но и с активацией молекул под воздействием кавитации и возникающих перепадов температуры и давления. Какую-то роль при этом могут играть и электрические явления.  [c.368]

Днища П-й группы. Эллиптические днища, выходящие за пределы ГОСТ 6533-78, применяются главным образом для сосудов и аппаратов высокого и сверхвысского давления, а также для сосудов специального назначения, например, для реакторов химической промыш-леннссти, атомных электростанций и котлов высокого давления.  [c.7]

Двуокись углерода и сернистый газ представляют собой два трехатомных газа с аналогичным химическим составом. Несмотря на то что колебательная составляющая теплоемкости двуокиси углерода превышает таковую для сернистого газа почти на 0,35 кал1моль при 300 °К, теплоемкость при постоянном давлении углекислого газа при 300°К и 1 атм равна 8,89 кал/ моль°К) по сравнению с 9,54 кал1(мояь °К.) для сернистого газа. Какой вывод о молекулярной структуре этих газов можно сделать из этих термодинамических данных  [c.148]

Проблема адсорбции пара на твердых поверхностях играет важную роль в процессах хроматографического разделения, ионного обмена и химического катализа. В этой системе представляет интерес соотношение между количеством адсорбированного вещества и давлением в системе при данной температуре в условиях равновесия. Такое соотношение впервые вывел Лангмюр на основании кинетического анализа скоростей адсорбции и десорбции. Условия равновесия были установлены путем приравнивания скоростей двух противоположных процессов. Однако полученные Лангмюром изотермы адсорбции не зависят от скоростей и механизма процесса и могут быть целиком получены на основе критерия равновесия, выраженного уравнением (8-17), или с помощью положения, что химический потенциал компонента должен быть один и тот же в обеих фазах.  [c.269]

Работы в этой области немногочисленны, хотя многие аппараты, химические реакторы, теплообменники работают в условиях несвободного истечения. В [Л. 386] приведены результаты опытов по истечению слоя различных материалов (катализатор, песок, цемент и пр.) при перепаде давлений Ар, направленном в сторону истечения. Так как < т = 0,0028- 3,051 мм, а Z)o = 3,18 12,7 мм, то очевидно, что относительный диаметр отверстия Doldr изменялся в широких пределах. Предложены следующие зависимости для минутного весового расхода слоя и газа  [c.311]

Высокая эластичность, способность к большим обратимым деформациям, стойкость к действию активных химических веществ, малая водо- и газопроницаемость, хорошие диэлектрические и другие свойства резины обусловили ее применение во всех отраслях народного хозяйства. В машиностроении применяют разнообразные резиновые технические детали ремни — для передачи вращательного движения с одного вала на другой шланги и напорные рукава— для передачи жидкостей и газов под давлением сальники манжеты, прокладочные кольца и уплотнители — для уплотнения подвижных и неподвижных соединений муфты, амортизаторы — для гашения динамических нагрузок конвейерные ленты — для оснащения погрузочно-разгрузочных устройств и т. д.  [c.436]

Химическая конденсация влаги — продолжение развития адсорбциснной конденсации в виде химического взаимодействия продуктов коррозии с водой с образованием гидратированных соединений, которым соответствует пониженное давление насыщен-  [c.375]

Фильтр-пресс — аппарат химического производства для фильтрования под давлением различных суспензш г.  [c.270]

Химические, нефтехимические и другие процессы часто осуществляются при высоких давлениях. Основной npmimioii вли я-ния давления па процессы электрохимической коррозии металлов является и31 геиеиие растворимости газов, участвующих в  [c.82]


Савицкая О. С. Карбонильная коррозия металлов и сплавов ври высо-ки. температурах н давлениях. .Химическое и нефтяное машипостроение , 1965, № а.  [c.158]

Кремнистомарганцовистая бронза марки Бр.КМц 3-1 применяется для изготовления аппаратуры, работающей под давлением, а также для взрывоопасной аппаратуры, так как такие бронзы, также как бериллиевые, не дают искр при ударах. Кремнисто-никелевая бронза Бр.КН 1-3 применяется в химическом машиностроении для изготовления пружин и пружинящих деталей, а также деталей, работающих в условиях трения.  [c.252]

Хром жаростоек, имеет весьма низкий коэффициент трения,. в1.1сокую твердость и обладает высокой стойкостью па износ. Так называемое пористое хромирование используется в химическом машиностроении для увеличении срока службы деталей, подвергающихся воздействию высоких температур или механическому износу (например, штоков компрессоров высокого давления, штампов, матриц, просеформ и т. п.).  [c.320]

На рнс. 242 представлен отгонный куб из текстофаолита, изготовленный на одном химическом заводе. Его диаметр 1400 мм, г .ысота 2700 мм. Куб работает в среде 35% гексахлорана, 2% хлора, 1,2% соляной кислоты и 61,87о бензола при температуре 100° С и давлении 20-10 н/м . Куб изготовлен из трех слоев фаолита я соответственно из трех слоев хлопчатобумажной ткани. Корпус вставляют в. металлический кожух (для защиты от механических повреждений) и укрепляют с ио.мощью металлическо-10 уголка. Учитывая различие коэффициентов линейного расшире-  [c.400]

Полиэтилен низкого давления, ио сравнению с полиэтиленом высокого давления, об.тадает более высокими прочностными показателями и более высокой химической стойкостью. По этим причинам полиэтилен НД находит большее применение в химическом машиностроении. Физико-механические свойства полиэтилена марок НД и ВД приведены в табл. 48. С повышением температуры прочностные показатели полиэтилена, в особенности предел прочности ири разрыве, снижаются (рис. 248).  [c.420]

Арзамиты представляют собой химически стойкие самотвер-деющие связующие материалы, применяемые для футеровки химической аппаратуры и строительных конструкций. Они обладают высокой химической стойкостью и механической прочностью и практически непроницаемы для агрессивных жидкостей даже при повышенном давлении. Замазки арзамит одинаково устойчивы к действию кислот и щелочей, что выгодно отличает их от силикатных замазок на основе жидкого стекла. Некоторые сорта этих замазок являются почти единственными теплопроводными вяжущими.  [c.460]


Смотреть страницы где упоминается термин Химический под давлением 6 - 209 - : [c.723]    [c.28]    [c.121]    [c.67]    [c.294]    [c.48]    [c.141]    [c.19]    [c.100]    [c.101]    [c.152]    [c.354]    [c.440]    [c.195]    [c.196]   
Машиностроение Энциклопедический справочник Раздел 3 Том 6 (1948) -- [ c.0 ]



ПОИСК



107 — Химический состав под давлением — Размеры — Отклонения допускаемые

216 — Назначение 212 — Обработка давлением 216 — Режимы термообработки 216 — Свариваемость 216 Способы сварки 216 — Химический состав 213 — Хладностой кость 215 Экономичность процесса

27, 28 — Обработка давлением горячая 28 — Термическая обработка 27, 28 — Химический состав

27, 28 — Обработка давлением горячая 28 — Термическая обработка 27, 28 — Химический состав магнитные свойства 35, 36 — Структура — Влияние хрома, никеля

27, 28 — Обработка давлением горячая 28 — Термическая обработка 27, 28 — Химический состав марганца

27, 28 — Обработка давлением горячая 28 — Термическая обработка 27, 28 — Химический состав оценка 65 , 66 — Механические

Баббиты для литья под давлением 228 Химический состав и свойства

Баббиты для литья под давлением 228 Химический состав и свойства и область применения 229 — Физикомеханические свойства 229 — Химический состав

Баббиты для литья под давлением 228 Химический состав и свойства свойства

Беляева, В. Д. Тимофеев Модификация метода падающего груза для исследования вязкости химически реагирующих газов в широком диапазоне температур и давлений

Влияние химического состава на обработку металлов давлением

Давление 9 — Измерение паров химических элементов

Латунь, обрабатываемая давлением-Химический состав

Общие закономерности, связывающие равновесное давление кислорода, дефектность кристаллической структуры и химический состав ферритов с температурой

Пары аммиака насыщенные элементов химических — Давлени

Проведение химических очисток оборудования блоков сверхкритического давления

Прочность паяных соединений 289 — Влияние давления 307, зазора и частоты химического состава припоя

Свойства основные Химический обрабатываемые давлением

Химический обрабатываемая давлением

Химический потенциал и давление насыщенных паров жидкостей и твердых тел

Химический состав исследованных металлов и сплавов при горячей и холодной обработках давлением

Химический состав под давлением - Допуски

Элементы химические — Давления паро

Элементы химические — Давления паров



© 2025 Mash-xxl.info Реклама на сайте