Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо Механические свойства

Феррит — твердый раствор небольшого количества углерода (до 0,04 %) и других примесей в а-железе (рис. 4.1, а) — мягкая, пластичная и недостаточно прочная структурная составляющая. Его относительное удлинение 5 равно 30 %, твердость — 50-80 НВ, предел прочности = 300 МПа (30 кгс/мм ). Практически это чистое железо. Механические свойства феррита в большой степени зависят от размеров зерен. Феррит обладает магнитными свойствами (до температуры 768 °С).  [c.58]


Свинец имеет большую плотность (р = 11,3-10 кг/м ), низкую температуру плавления (600 К) и низкую теплопроводность (примерно в 2,5 раза меньшую, чем железо). Механические свойства листового свинца характеризуются временным сопротивлением а = 13,5 МН/м" при 65 50%.  [c.135]

Рнс. 69. Изменение механических свойств наклепанного железа в зависимости от температуры отжига (И. А. Одинг)  [c.88]

Механические свойства железа характеризуются следующими величинами  [c.162]

Исследование механических свойств сталей показало, что их пластические и вязкие свойства, а отсюда и возможность упрочнения зависят от чистоты стали, содержания примесей внедрения (азот, кислород, водород) и неметаллических включений. Примеси внедрения, т. е. элементы, образующие с железом твердые растворы внедрения, создавая местные искажения, затрудняют движение дислокаций. Пластическая деформация при этом затруднена, и в местах скопления неподвижных дислокаций облегчается зарождение микротрещин.  [c.396]

Влияние никеля на механические свойства и порог хладноломкости железа  [c.501]

Т. е. по свойствам близок к свойству чистейшего железа (см. примечание на с. 162). Вообще можно сказать, что различные металлы высокой чистоты мало отличаются по механическим свойствам.  [c.565]

Третий этап (завершающий) — раскисление стали — заключается в восстановлении оксида железа, растворенного в жидком металле. При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород — вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах. Сталь раскисляют двумя способами осаждающим и диффузионным.  [c.31]

Коррозия начинается с поверхности металла и при дальнейшем развитии этого процесса распространяется вглубь. Металл при этом может частично пли полностью растворяться (например, цинк в соляной кислоте) или же могут образоваться продукты коррозии в виде осадка на металле (например, ржавчина ] ри коррозии железа во влажной атмосфере, гидрат окисла при коррозии цинка в воде). Иногда коррозионные процессы протекают с изменением физико-механических свойств металлов и сплавов (потерей металлического звука, резким снижением механической прочности вследствие нарушения связи по границам кристаллитов).  [c.5]

Примеси железа способствуют измельчению структуры и повышению механических свойств меди, но теплопроводность и коррозионная стойкость металла при этом понижаются.  [c.247]


Часто в оловянистую бронзу вводят в небольшом количестве цинк, свинец и др. Цинк, вводимый в состав оловянистых бронз, улучшает их литейные свойства, уменьшает интервал кристаллизации, не нарушая однородности сплава, и не влияет существенным образом на механические свойства. Фосфор содержится в бронзе в незначительных количествах при его содержании в сплаве не свыше 1% он улучшает литейные, антифрикционные и механические свойства. Свинец вводится в основном для улучшения антифрикционных свойств оловянистой бронзы. Суммарное содержание других примесей (висмут, железо, сурьма) в оловянистых бронзах допустимо в пределах 0,2.—0,4%.  [c.250]

Участок 7, нагреваемый в области температур 200—450 С, является зоной перехода от зоны термического влияния к основному металлу. В этой зоне могут протекать процессы старения в связи с выпадением карбидов железа и нитридов, в связи с чем механические свойства металла этой зоны понижаются.  [c.30]

Наиболее эффективными легирующими компонентами, повышающими устойчивость железа к окислению на воздухе, являются алюминий и хром, особенно если использовать их с добавками никеля и кремния. Отмечено, что сплав 8 % А1—Fe обладает такой же устойчивостью к окислению, как и сплавы 20 % Сг— 80 % Ni [55]. К сожалению, применение стойких к окислению А1—Fe-сплавов ограничено их низкими механическими свойствами, малой прочностью защитных оксидных пленок и способностью алюминия образовывать нитриды, вызывающие охрупчивание. Некоторые из этих недостатков А1—Fe-сплавов преодолеваются посредством легирования хромом.  [c.204]

Графики этих зависимостей приведены на рис. 9.16. Малая активность марганца как раскислителя создает большие остаточные концентрации марганца в металле, но они не влияют на механические свойства стали (до 1 %). При высоких температурах и достаточно малых концентрациях Мп остаточная концентрация кислорода превышает предел концентрации насыщенного раствора Li (см. с. 329 ), которая показана на рис. 9.16 штриховой линией. Несмотря на малую раскислительную активность, марганец широко применяется в сварочной металлургии, так как кроме кислорода он извлекает из жидкого металла серу, переводя ее в MnS, плавящийся при 1883 К, поэтому при кристаллизации металла шва влияние легкоплавкой сульфидной эвтектики понижается и повышается сопротивление металла образованию горячих трещин. Обобщенная диаграмма плавкости Me — S для железа, кобальта и никеля приведена на рис. 9.17, указаны температуры плавления сульфидных эвтектик, лежащих ниже температур кристаллизации стали, никеля и кобальта.  [c.328]

Бронзы обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, а также хорошей обрабатываемостью и литейными свойствами. В связи с этим бронзы широко применяют в подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках винтовых механизмов, для изготовления арматуры и т. п. Бронзы по основному, кроме меди, компоненту делят на оловянистые, свинцовистые, алюминиевые, бериллиевые, кремнистые и др. Их обозначают буквами Бр и условными обозначениями основных компонентов А — алюминий, Б — бериллий, Ж — железо, К —кремний, Мц —марганец, Н — никель, О — олово, С — свинец, Ц — цинк, Ф — фосфор, а также цифрами, выражающими среднее содержание компонентов в процентах. Например, Бр ОФ 10-1 обозначает бронзу с содержанием 10% олова и 1% фосфора. Фосфористую (Бр ОФ 6,5-1,5) и бериллиевую (Бр Б 2,5) бронзы применяют для изготовления трубчатых пружин, мембран, моментных пружин (волосков) и т. д. Механические свойства и области применения других марок бронз приведены в табл. 16.3.  [c.162]

Феррит - твердый раствор внедрения углерода в a-Fe. Углерод располагается в решетке a-Fe в с центре грани куба. Максимальная растворимость достигает 0,02% С при 727 °С. При комнатной температуре максимально растворяется до 0,006% С. Твердость и механический свойства феррита близки к свойствам технического железа.  [c.155]

При перекрестной прокатке карбонильного железа и вообще о. ц. к. металлов обнаружено существенное уменьшение рассеяния текстуры. В г. ц. к. металлах, в частности меди, текстура после перекрестной прокатки представляла собой наложение двух обычных текстур прокатки, повернутых одна относительно другой на 90°. Кроме того, возникают и некоторые другие ориентировки, что в сумме заметно уменьшает анизотропию механических свойств.  [c.290]


Железо измельчает зерно и повышает механические и антифрикционные свойства алюминиевых бронз. Никель улучшает механические свойства и износостойкость, температуру рекристаллизации и коррозионную стойкость Марганец повышает технологические и коррозионные свойства  [c.116]

Вредное влияние железа на свойства алюминиевых сплавов общеизвестно. Поршневое давление 200 МН/м позволяет уменьшить это влияние в сплавах системы А1—Si—Mg, если содержание железа не превышает 0,8%. При дальнейшем увеличении содержания железа в сплаве до 2% пластические свойства слитков, затвердевших под поршневым давлением, не превышают свойств обычных кокильных отливок как в литом состоянии, так и после термической обработки. Это указывает на то, что и для кристаллизации под механическим давлением необходимо готовить расплавы со всей тщательностью, не допуская присутствия вредных примесей сверх пределов, указываемых в технических условиях.  [c.125]

Влияние железа и кислорода при 2й С на механические свойства меди после отжига при 700 С следующее  [c.29]

Р 0,002, 51 0,001, Н 0,0003. Легирование марганцем (до 2 %) повышает механические свойства такого железа и понижает порог хладноломкости (рис. 71—73).  [c.149]

На механические свойства железа оказывает влияние внешняя среда. При испытании на ползучесть при 700 °С под напряжением 34 МПа образцы армко-железа через 26 мин удлинялись в вакууме на 3,5 %, а в  [c.152]

Алюминий — Влияние на окалиностой-кость нержавеющих сталей 221 Армко-железо — Механические свойства при низких и сверхнизких температурах 234  [c.429]

Железо положительно влияет на свойства алюминиевых бронз. Оно повышает прочность и твёрдость сплавов, измельчает структуру и уничтожает явление самоотпуска в двойных двухфазных алюминиевых бронзах. На листе 111, 8 (см. вклейку) при увеличении X ЮО показано строение литой алюминиево-железной бронзы Бр АЖ 9-4. Структура — трёхфазная, состоящая из кристаллов твёрдого раствора а 3 и включений железа. Под действием железа механические свойства сплава зна>К1-тельно повышены, а структура измельчена.  [c.114]

Из изложенного следует, что лишь сплавы Э. З и Э4 являются феррит-ными. Магнитные характеристики у них получаются выше, но они более хрупки. Сплавы группы ЭЗ и Э4 называются трансформаторным железом, а Э1 и Э2 — динамной сталью. В соответствии с этим трансформаторное железо (основное применение — сердечники трансформаторов), обладающее более высокими магнитными свойствами, имеет более ннзкие механические свойства, чем динамная сталь (главное применение — детали динамомашин).  [c.548]

И после Бертье различные исследователи получали разнообразные сплавы хрома с железом. Наличие хрома придавало им высокую прочность и твердость, однако необходимая коррозионная стойкость не достигалась, главным образом из-за высокого содержания углерода. Только в 1904 г. француз Гийе [6] получил низкоуглеродистые сплавы хрома, состав которых обеспечивал их пассивность. Он изучил строение и механические свойства сплавов Сг—Fe, а также сплавов Сг—Fe—N1, называемых ныне аустенитными нержавеющими сталями.  [c.295]

Для улучшения механических свойств в алюминий в качестве легирующих добавок обычно вводят медь, кремний, магний, цинк и марганец. Из них марганец может заметно повысить коррозионную стойкость деформируемых и литейных сплавов, потому что образуется МпА способный связывать железо в интер-металлид состава (MnFe)Ale. Последний в плавильной ваннё оса-ждается в виде шлама, и таким образом уменьшается вредное влияние небольших примесей железа на коррозионную стойкость [25]. Так как марганец не образует подобных соединений с кобальтом, медью и никелем, то не следует ожидать, что добавка марганца устранит отрицательное влияние этих металлов на коррозионное поведение сплава.  [c.352]

Так как бинарные никелево-молибденовые сплавы имеют плохие физико-механические свойства (низкая пластичность, плохая обрабатываемость), то в них вводят Другие элементы, например железо, для создания тройных или многокомпонентных сплавов. Они тоже довольно трудно обрабатываются, но все же заметно легче, чем двухкомпонентные. В соляной и серной кислотах стойкость этих сплавов выше, чем никеля, однако в окислительных средах (например, в азотной кислоте) повышения стойкости не отмечается. Коррозионный потенциал сплавов Ni—Мо—Fe лежит в акт11вной области, поэтому на них образуется питтинг в сильнокислых средах, в которых эти сплавы обычно исполЬ зуют на практике.  [c.362]

Как видно из рис. 25.1, скорость коррозии сплавов кремний—железо в 10 % растворе H2SO4 при 80 °С зависит от содержания кремния. Для достижения оптимальной стойкости необходимо, чтобы содержание Si составляло не менее 14,5 % — такой состав соответствует промышленно выпускаемому. Сплавы никеля содержат от 8,5 до 10 % Si это не обеспечивает оптимальной коррозионной стойкости, но при таком составе они имеют лучшие механические свойства, чем при большем содержании кремния. Принятые составы обоих сплавов приведены в табл. 25.1.  [c.384]

Латуни подразделяются на двойные сплавы медн с цинком, в которых содержание цинка доходит до 50 о, и многокомпонентные, имеющие в своем составе также алюминий, железо,, марганец, свинец, никель и другие добавки, повышающие механические и физические свойства латуни. Латуни обладают хорошими механическими свойствами, высоким сопротивлением коррозии, хорошо поддаются механической обработке. Их обозначают буквой Л и условным буквенным обозначением основных компонентов, а также числами, обозначающими среднее содержание меди и компонентов. Например, ЛК80-3 — кремнистая латунь, содержащая 80 меди и 3% кремния (остальное — цинк).  [c.163]

Дальнейшее развитие физико-химии углеродных кластеров и получения фуллеренов, фуллеритов и фуллероидов будут способствовать созданию новых материалов с особыми физико-химическими свойствами и улучшению механических свойств конструкционных материалов [21]. В этой связи большой интерес представляют результаты недавних исследований, выявившие наличие в структуре железо - углеродистых сплавов фуллереновых комплексов на основе Qo-  [c.214]


При сравнении механических свойств с данными теоретических расчетов получается, что тсорстинсскаи прочность во много раз превышает практическую прочность металлов. Так, например, теоретический предел прочности железа, полученный расчетным путем (исходя из сил сцепления и теплоты сублимации), равен 56000 МПа, в то время как практический предел прочности железа равен 280 МПа, т.е. превышает в 200 раз, а для некоторых тугоплавких ме1аллов превышает даже в 1000 раз.  [c.25]

Никель является сильным аутенитообразующим элементом. Железо и никель при затвердевании образуют у-твердый раствор в широком интервале концентраций. Влияние никеля на повышение жаростойкости хромоникелевой стали проявляется в повышении механических свойств при высоких температурах в результате наличия аустенитной структуры, в увеличении плотности оксидной пленки, усилении ее сцепления с основным металлом. Степень влияния никеля на жаростойкость непрерывно увеличивается с ростом температуры.  [c.49]

Группа элементов (хром, молибден, вольфрам, ниобий, титан, алюминий и ванадий) наряду с растворением в а- или у-железе образует соединения с углеродом, железом и другими элементами. Эти соединения, имеющие малую скорость коагуляции и обладающие термической стойкостью, способны сохранять механические свойства сплавов при высоких температурах в течение продолжительного времени. Кроме того, обладая ограниченной рас1Воримо-стью в твердом растворе, они участвуют в процессах термической обработки, обеспечивая дисперсионное твердение сплавов.  [c.50]

Рис. 3.9. Механические свойства железа и никеля iipir высоких температурах [6, 10] Рис. 3.9. Механические свойства железа и никеля iipir высоких температурах [6, 10]
В механизме окислительного изнашивания важную роль играют строение окисных пленок и их механические свойства. Строение и свойства пленок окислов в значительной степени зависят от их толщины. Тонкие сплошные пленки (1-10) 10 м, как правило, образуются при невысоких и умеренных температурах. Однослойная окалина (окисная пленка) образуется только на чистых металлах с постоянной валентностью, например на алюминии и никеле. Металлы с переменной валентностью (железо, медь, кобальт, марганец), имеющие различные степени окисления, могут давать многослойнук окалину - несколько окисных фаз, отвечающих различным степеням окисления. Порядок расположения слоев от внешней к внутренней поверхности будет соответствовать убыванию содержания кислорода в каждой окисной фазе. Однако эти же металлы в определенных условиях окисления могут образовывать практически однофазные слои, отвечающие одной степени окисления. Более сложная картина наблюдается при окислении сплавов. Металлы, входящие в состав сплавов, обладают различным сродством к кислороду. Это обстоятельство и разная скорость диффузии металлов в пленке окислов обусловливают более или менее сильную сегрегацию атомов металла в окисной пленке. В сложных сплавах при окислении происходит обогащение или обеднение пленки окислов элементами, входящими в сплавы. При этом степень обогащения ИЛИ обеднення зависит от сродства металла к кислороду и от скорости диффузии металла в слое окисла.  [c.131]


Смотреть страницы где упоминается термин Железо Механические свойства : [c.257]    [c.236]    [c.328]    [c.349]    [c.78]    [c.158]    [c.135]    [c.26]    [c.20]    [c.129]    [c.86]    [c.304]    [c.213]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.312 ]



ПОИСК



Армко-железо — Механические свойства при низких и сверхнизких температурах

Железо Армко - Механические свойства Влияние низкой температуры

Железо вихревое — Механические свойства — Зависимость от частиц порошка

Железо пористое спечённое — Механические свойства

Железо техническое — Механические свойства при различных температурах

Железо — Свойства

Железо-графит Механические свойства

Металлокерамическое железо - Механические свойства

Химический железо-графитовые - Механические свойства



© 2025 Mash-xxl.info Реклама на сайте