Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод активного диска

Метод активного диска  [c.92]

Метод активного диска 92  [c.386]

Для устранения этой главной опасности наиболее сильное средство — снижение температуры ротора до уровня, при котором нет заметной ползучести материала и который для применяемых материалов близок к 625 К. Этого реально можно достигнуть методом активного (с пропуском охлаждающего пара) и пассивного (без потока пара) экранирования и охлаждения ротора паром по поверхностям диска и в хвостовых соединениях, аналогично методу охлаждения газовых турбин. Уменьшение напряжений в паровых коробках и в цилиндрах достигается развитым экранированием их поверхностей для снижения разности температур по толщине стенок. Для этого не всегда целесообразно между экраном и поверхностью пропускать пар пониженной температуры. Например, ЦКТИ рекомендует [13] защищать внешнюю поверхность сопловых коробок таким образом, чтобы она не омывалась паром с температуро№ более низкой, чем внутри коробки.  [c.86]


Диски. Для активных турбин при температуре пара не выше 400° С обычно применяют диски, изготовленные отдельно от вала и насаженные на него при сборке на заводе. На рис. 28-26 показаны некоторые из методов крепления дисков на валу. При всех способах посадки дисков  [c.465]

Если периоды полураспада Т 1 сек, то для их измерения требуются специальные методы, позволяющие за очень короткое время произвести несколько определений активности препарата. Можно, например, укрепить препарат на вращающемся диске или бесконечной ленте, рядом с которой расположен один или несколько счетчиков а-частиц. Тогда каждый раз, когда препарат проходит мимо счетчика, последний регистрирует активность. Зная скорость вращения диска или ленты, можно определить моменты времени, в которые производится измерение. Подобные (или сходные) методы используются, например, для определения коротких (секундных) периодов полураспада у вновь открываемых изотопов трансурановых элементов (см. 49). Для определения еще более коротких периодов диск или ленту можно заменить специальной радиосхемой, включающей через определенные промежутки времени At счетчик, который будет регистрировать постепенно убывающую активность.  [c.104]

Для исследования адгезии частиц в жидких средах, в частности в растворах электролитов и поверхностно-активных веществ, часто используют методы скрещенных нитей и плоскопараллельных дисков. Метод скрещенных нитей впервые применил Томлинсон [51] для определения сил адгезии между двумя пересекающимися стеклянными или кварцевыми нитями (диаметром около 60 мкм) по максимальному прогибу одной нити при медленном отводе ее в сторону от другой, по длине и л<есткости исследуемой нити.  [c.85]

При обработке базовых поверхностей заготовок конических колес типа диска и вала в последнее время шлифование заменяют точением. Высокая и стабильная точность достигается с применением на станке устройств активного контроля. Автоматические измерения диаметра заготовки в процессе обработки и подналадка станка обеспечивают более высокую точность диаметра, чем точность, достигаемая другими методами обработки.  [c.204]

Займемся дальнейшим развитием, нестационарной теории профиля с тем, чтобы приспособить ее к анализу обтекания вращающейся лопасти. Хотя основы теории уже излагались в предыдущих разделах, приложение ее к лопасти несущего винта требует учета целого ряда дополнительных факторов. Применение схемы несущей линии разделяет задачу расчета нестационарных аэродинамических нагрузок при пространственном обтекании на две части внутреннюю, в которой исследуются аэродинамические характеристики профиля, и внешнюю, состоящую из расчета индуктивных скоростей, создаваемых в сечении лопасти вихревым следом винта. Что касается внутренней задачи, то при стационарном обтекании плоского профиля аэродинамические нагрузки могут быть получены из эксперимента и представлены в виде табулированных зависимостей их от угла атаки и числа Маха. При нестационарном досрывном обтекании применимы результаты теории тонкого профиля. Решение внешней задачи затруднено тем, что система вихрей винта имеет весьма сложную конфигурацию. За каждой из вращающихся лопастей тянутся взаимодействующие винтовые вихревые поверхности, деформирующиеся в поле создаваемых ими индуктивных скоростей с возникновением областей сильной завихренности в виде концевых вихревых жгутов. Аналитическое определение индуктивной скорости на лопасти без весьма существенных упрощений модели вихревого следа (например, представления винта активным диском) оказывается невозможным. На практике неоднородное поле индуктивных скоростей определяют численными методами, подробно обсуждаемыми в гл. 13. Ввиду сказанного ниже не предполагается отыскивать зависимость между индуктивной скоростью и нагрузкой путем введения функции уменьшения подъемной силы. Напротив, сами индуктивные скорости являются фактором, учитываемым явно в нестационарной теории профиля. Для построения схемы несущей линии желательно, чтобы вычисление индуктивных скоростей производилось лишь в одной точке по хорде. Проведенное выше исследование обтекания профиля на основе схемы несущей линии указывает способ, который позволяет аппроксимировать нестационарные нагрузки с достаточно полным отображением влияния пелены вихрей. Применительно к лопасти достаточно рассмотреть лишь часть пелены, расположенную вблизи ее задней кромки. При построении нестационарной теории обтекания вращающейся лопасти надлежит учесть влияние обратного обтекания и радиального течения. Теоретические нагрузки должны быть скорректированы таким образом, чтобы они отражали влияние  [c.480]


Механические испытания в указанных направлениях были осуществлены с широким использованием средств измерения местных упругих и упругопластических деформаций (малобазной тензометрии, муара, сетки, оптически активных покрытий, голографии, интерферометрии) автоматизированных установок с управлением от ЭВМ и от программных регуляторов, имеющих электрогидравлический, электромеханический и электродинамический приводы систем измерения процессов повреждения и развития трещин (оптической микроскопии, метода электропотенциалов и электросопротивлений, датчиков последовательного разрыва, датчиков накопления повреждений, акустической эмиссии, анализа жесткости объекта нагружения) комбинированных (расчетно-эксперименталь-ных) методов и средств изучения напряженно-деформированных состояний и прочности для обоснования программ испытаний и анализа их результатов систем для проведения стендовых испытаний моделей и реальных конструкций, включающих указанные выше средства измерения и регистрации деформаций, накопленных повреждений и длин трещин (сосудов давления, трубопроводов, дисков и лопаток турбин, валов, элементов энергетических и транспортных установок, сварных конструкций).  [c.19]

Методика измерений состояла в том, что металлические диски опускались на стеклянных держателях в стеклянные цилиндрические пробирки с исследуемым маслом. Измерение активности поверхности дисков производилось торцовым Р-счетчиком ТМ-20 на установке типа Б . Фон составлял 20—40 имп1мин. Счет импульсов производился с точностью не менее +3%. Количество серы или фосфора, вступивших во взаимодействие с металлом, определялось расчетным путем с применением эталонных растворов активных веществ, наносимых на стандартные диски. Метод давал возможность определять тысячные до.пи микрограмма серы или фосфора на 1 ем поверхности, что позволяло изучать начальные стадии взаимодействия серы, фосфора и их соединений с металлом.  [c.67]

Метод фотоупругости позволяет натядно и просто определять поля распределений напряжений в телах сложной формы, в том числе в зонах концентрации напряжений. Однако исследование приходится проводить не на реальном, а на модельном материале, который отражает действительные свойства материалов только в упругой области. Для изучения закономерностей пластического деформирования по1фытие из оптически активного материала наносится на реальную деталь, например, на вращающийся диск. Используя стробоскопические эффекты и исследуя напряжения по-1фьггий, можно оценить деформированное состояние реальной детали.  [c.271]

В настоящее время существует ряд методов борьбы с нежелательными искажениями активной среды в мощных импульсно-периодических лазерах на стекле с неодимом [10, 31]. К наиболее эффективным следует отнести выбор конфигурации активного элемента (пластинки, диски и т. д.) выбор оптимального режима термостабилизации, при котором минимальны поперечные градиенты температуры подбор марок стекла. Однако, несмотря на существующие методы борьбы с тепловыми эффектами и достигнутые в этом направлении положительные результаты, проблема повышения частоты следования импульсов генерации в мощных лазерах на стекле с неодимом остается пока актуальной.  [c.168]

В практике чаще применяется метод компенсации, как более удобный и точный. Однако здесь нужно знать с — коэффициент оптической активности материала исследуемого образца. Коэффициент оптической активности определяется обычно на образцах прямоугольного сечения, подвергаемых осевому растяжению или сжатию. Но при этом неизбежно возникает внецентренность приложения сил, образец оказывается в сложном напряженном состоянии и определение величины с связано с определенными трудностями. Значительно проще использовать для этой цели образцы в виде дисков, подвергаемых простому сжатию, причем внецентренность приложения нагрузки исключается. Оптическая разность хода лучей определяется в центре диска. Коэффициент оптической активности для диска вычисляется по формуле  [c.9]

Регулируемые входные направляющие аппараты 2 у вентилятора и 7 у осевого компрессора, а также регулируемые направляющие аппараты 4 у вентилятора и 9 — у компрессора. Ротор 9 КВД моноблочный, сварной из высокопрочного никелевого сплава, диски получены методом изостатического прессования. Камера сгорания 10 с тепловой защитой керамическими покрытиями, перспективной системой охлаждения, с применением дисперсионно-упрочненных сплавов. Корпус 12 турбины высокого давления 14 имеет систему активного управления зазорами, с рядом кольцевых деталей из керамических и композиционных материалов. Диск ротора турбины высокого давления получен изостатическим прессованием никелевых сплавов, а лопатки — монокристалличе-ские или из эвтектических сплавов. Намечено применение регулируемые сопловых аппаратов 11 и 13 турбин и смесителя 16. Реали-552  [c.552]



Смотреть страницы где упоминается термин Метод активного диска : [c.412]   
Аэродинамика решеток турбомашин (1987) -- [ c.92 ]



ПОИСК



Активный диск

Активный, метод



© 2025 Mash-xxl.info Реклама на сайте