Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примеси в полупроводниках легирование

Проводимость, связанная с носителями, которые совершают перескоки между локализованными состояниями вблизи уровня Ферми. Этот процесс аналогичен прыжковой проводимости по примесям в сильно легированных компенсированных полупроводниках. В области локализованных состояний электрон с заданной энергией не может удалиться достаточно далеко от своего центра локализации. Хотя может существовать перекрытие волновых функций некоторых состояний, отвечающих достаточно близким потенциальным ямам, его недостаточно для того, чтобы проводимость системы при Т=0 К была отлична от нуля. В области локализованных состояний стационарный перенос заряда может происходить лишь путем перескоков носителей  [c.361]


Легирование — процесс искусственного введения примесей в полупроводник для управляемого изменения его физических свойств. Легирующим называется химический элемент, атомы которого введены в решетку кристалла полупроводника для изменения его свойств. Примесь, атомы которой являются акцепторами называют акцепторной. Акцептор — дефект решетки, способный при возбуждении захватывать электрон из валентной зоны. Соответственно донорной называют примесь, атомы которой являются донорами. Донор — это дефект решетки, способный при возбуждении отдавать электрон в зону проводимости.  [c.334]

Во многих веществах С. з, зависит от наличия посторонних примесей. В полупроводниках и диэлектриках С. 3. чувствительна к концентрации примесей. Так, при легировании полупроводника примесью, увеличивающей число носителей тока, С. з. уменьшается с увеличением концентрации С. 3. в полупроводниках слабо возрастает при уменьшении темп-ры.  [c.328]

Концентрация вводимой примеси при использовании таких традиционных термодинамических равновесных методов легирования, как, например, диффузия, не превышает некоторого предела, определяемого растворимостью. В то же время методом ионной имплантации можно ввести в полупроводник практически неограниченное количество примесных атомов. Таким образом, представляется возможным реализовать второй путь, т. е. получить примесную проводимость за счет, введения большой концентрации доноров (или акцепторов). Нам удалось без предварительного снижения плот-366  [c.366]

Во втором случае атомы вводимой примеси имеют меньшее число валентных электронов, чем атомы полупроводника. Поэтому атомам примеси не хватает валентных электронов для образования всех химических связей с окружающими их атомами полупроводника. Недостающие электроны могут быть захвачены атомами примеси у соседних атомов полупроводника, для чего необходима небольшая энергия Ел (рис. 3, в). При этом атомы примеси приобретают отрицательный заряд, а в валентной зоне на месте захваченного электрона образуется дырка. Введение в полупроводник таких примесей, называемых акцепторными, приводит к возрастанию концентрации дырок в валентной зоне при неизменной концентрации электронов в зоне проводимости. Полупроводники, легированные акцепторной примесью, называют дырочными, или полупроводниками р-типа электропроводности.  [c.8]

Германий, используемый для изготовления полупроводниковых элементов, не должен содержать случайных примесей больше 51(Т %. Наиболее распространенным способом очистки германия является метод зонной плавки. Электронный и дырочный тип электропроводности в германии создают путем легирования его соответствующей примесью. Концентрация легирующей примеси обычно составляет один атом на - 10 атомов полупроводника. Поэтому примесь в германий вводят в виде лигатуры, которая является сплавом германия с примесью. В лигатуре примесь содержится уже в значительных количествах (составляет проценты).  [c.78]


При дальнейшем увеличении N нарушается неравенство (1). Из-за перекрытия волновых ф-ций электронов соседних атомов дискретные уровни уширяются настолько, что преобразуются в примесную зону. Пока в полупроводнике сохраняются уширенные примесные уровни либо обособленная от и примесная зона, уровень легирования относят к среднему (или промежуточному). При Достаточно большой концентрации примесей полностью нарушаются оба неравенства. Примесная зона продолжает расширяться, и при нёк-рой критич. концентрации Л ор она сливается как с зоной проводимости, так и с валентной зоной (рис. 1,е), Плотность состояний оказывается отличной от О практически во всей запрещённой зове полупроводника ( хвосты плотности состояний). При этом газ носителей заряда уже не подчиняется статистике Больцмана он становится вырожденным и подчиняется статистике Ферми.  [c.502]

Наличие метастабильных примесных центров обычно связывают с двумя возможностями зарядового и структурного состояния примеси — в исходном, когда примесь располагается в узле замещаемого элемента, и реконструированном состоянии, т. е. в междуузельной позиции. Прототипом метастабильных центров являются т. н. ОХ-центры, обнаруженные в III—V полупроводниках при их легировании донорными примесями [78, 79].  [c.46]

Для придания выращиваемым монокристаллам тех или иных электрофизических параметров, необходимых для успешного их использования в конкретных областях полупроводникового приборостроения, применяются процессы легирования определенными примесями. В настоящее время круг используемых в технологии важнейших полупроводниковых материалов легирующих примесей достаточно ограничен. Как правило, легирование осуществляется примесями, образующими мелкие донорные и акцепторные уровни в запрещенной зоне, соответственно у дна зоны проводимости или у потолка валентной зоны. При этом удается управляемо воздействовать на тип проводимости и концентрацию носителей заряда в полупроводнике. Иногда для легирования используются примеси, образующие глубокие уровни в запрещенной зоне, что позволяет воздействовать на диффузионную длину носителей заряда и регулировать степень компенсации электрически активных центров в легируемом материале.  [c.46]

Некоторые особенности теплопроводности полупроводников заслуживают специального рассмотрения. В чистых полупроводниках теплопроводность при нормальных и низких температурах определяется главным образом решеткой и поэтому обнаруживает такое же поведение, как и в неметаллах, которое уже описывалось ранее. Введение небольшого количества примесей прежде всего уменьшает фононную теплопроводность, поскольку фононы начинают испытывать рассеяние на ионах примеси, а во многих случаях также и на электронах, появляющихся из-за наличия примесей. Последний тип рассеяния во многом отличается от рассеяния на электронах, образующих вырожденную систему, когда в рассеянии участвуют только электроны с энергиями, близкими к энергии Ферми. При достаточно сильном легировании полупроводника может стать существенной и электронная теплопроводность, но, если система электронов остается невырожденной, соотношение между электропроводностью и электронной теплопроводностью имеет иной вид, чем в обычном металле. Существует еще один дополнительный механизм переноса тепла в полупроводниках. Электрон-дырочные пары, образующиеся на горячем конце сносятся в направлении градиента температуры и рекомбинируют на холодном, конце. При этом происходит перенос по полупроводнику энергии ионизации пары.  [c.253]

Рис. 2.27. При легировании полупроводника различными примесями энергетические зоны локально могут сдвигаться. На диаграмме представлена зависимость энергии от пространственной координаты. Доноры — это примеси в кристаллической решетке, которые могут давать электроны в зону проводимости. Акцепторы же — это примеси, которые могут связывать электроны, т. е. генерировать дырки в валентной зоне. F — уровень Ферми, до которого могут быть заполнены электронные уровни W — нижний край зоны проводимости, Wz, — верхний край валентной зоны, р и п относятся к положительным и отрицательным носителям заряда (в соответствии с типом легирующих примесей). Рис. 2.27. При <a href="/info/41581">легировании полупроводника</a> различными примесями <a href="/info/16603">энергетические зоны</a> локально могут сдвигаться. На диаграмме представлена зависимость энергии от <a href="/info/145365">пространственной координаты</a>. Доноры — это примеси в <a href="/info/12569">кристаллической решетке</a>, которые могут давать электроны в <a href="/info/16457">зону проводимости</a>. Акцепторы же — это примеси, которые могут связывать электроны, т. е. генерировать дырки в <a href="/info/16455">валентной зоне</a>. F — <a href="/info/7474">уровень Ферми</a>, до которого могут быть заполнены электронные уровни W — нижний <a href="/info/370275">край зоны проводимости</a>, Wz, — верхний <a href="/info/370274">край валентной зоны</a>, р и п относятся к положительным и отрицательным носителям заряда (в соответствии с типом легирующих примесей).

Полупроводник, легированный донорами, называется полупроводником п-типа носители в нем заряжены отрицательно. Полупроводник, легированный акцепторами, называется полупроводником р-типа заряд носителей здесь положителен. Полупроводники с равным количеством доноров и акцепторов (или с пренебрежимо малым числом тех или других) содержат равные числа положительных и отрицательных носителей и называются собственными полупроводниками. Их свойства определяются самим основным материалом, а не примесями. Мы еше не раз будем возвращаться к свойствам двух различных типов полупроводников.  [c.193]

Электрические свойства почти всех собственных полупроводников могут быть видоизменены добавкой небольших количеств примесей. В частности, примеси могут создать избыток электронов (л-тип) или дырок (/7-тип). До тех пор пока концентрация примеси не слишком велика, произведение концентраций электронов и дырок остается не зависящим от уровня легирования  [c.197]

Концентрация примеси в 51 и Ое обычно не превышает 10 м . В А В полупроводниках достигается значительно более высокий уровень легирования. При этом наблюдаются три важных эффекта. Во-первых, примесные уровни взаимодействуют с другими уровнями, в результате чего они размазываются и могут слиться с краем зоны. Во-вторых, происходит возмущение края зоны, что приводит к образованию хвоста . В результате этого сужается запрещенная зона. Наконец, уровень Ферми поднимается в зону проводимости в материале п-типа или снижается в валентную зону в материале / -типа. Такой полупроводник называется вырожденным. Эти эффекты будут подробно обсуждаться в 8.2.  [c.200]

В сильно легированных полупроводниках ситуация может быть иной примеси могут оставаться ионизованными и при нулевой температуре [6].  [c.118]

Путем введения примесей в полупроводник (легирование) можно значительно увеличить плотность Пц носителей тока. Однако введение примесей, увеличивая значение сор, уменьшает время х до значений 1№ —10 i се/с. Вследствие этого условие малозату-хаюш их колебаний (сооТ 1) осуществляется только в полупроводниках с очень малой эффективной массой электронов. Например, в ImSb электронная эффективная масса m 0,01 т.  [c.100]

Другим источником ростовых микродефектов могут быть легирующие и сопутствующие фоновые примеси, когда их концентрация в выращиваемом монокристалле достаточна для образования в процессе посткри-сталлизационного охлаждения (или при последующей термообработке) пересыщенного примесного твердого раствора в данном полупроводниковом материале. Характерными примерами в этом отношении являются легирующие примеси в сильно легированных полупроводниках, а также кислород в выращиваемых по методу Чохральского монокристаллах кремния. Несмотря на то, что в данном случае концентрация при-  [c.48]

При изучении кристаллических материалов довольно рана было установлено, что флуктуации потенциала, вызываемые примесями в полупроводнике, приводят к образованию хвостов плотности состояний у краев зон. Это вполне очевидно, если рассмотреть частицу в ящике в качестве модели электронных состояний вблизи дна зоны, как это показано на риЬ. 5.7, и ввести флуктуации потенциала. Такая задача рассматривалась во многих работах в связи с проблемой примесных зон в сильно легированных полупроводниках. Развитая теория, по-видимому, в значительной мере применима и для аморфных материалов ввиду рассмотренных в предыдущем параграфе указаний на то, что отсутствие дальнего порядка само по себе не меняет края зон по сравнению с их видом в кристалле. Часто. используется теория хвостов плотности состояний, предложенная Г альпериным и Лэксом [121, 122]. Для плотности состояний в области низкоэнергетического хвоста они получили зависимость вида ехр[— ], где п может изменяться с в интервале от V2 ДО 2.  [c.94]

Примеси в полупроводниках обычно рассматриваются как локализованные уровни с энергией, фиксированной по отношению к валентной зоне или зоне проводимости. Однако в 1949 г. Пирсон и Бардин показали [29], что энергия ионизации бора в Si уменьшается при увеличении концентрации примеси. Было доказано, что такое поведение характерно как для доноров [30], так и для акцепторов [31] в GaAs. Поскольку полупроводниковые лазеры часто изготавливаются из сильно легированного материала и работают при больших концентрациях инжектированных носителей, необходимо рассмотреть влияние этих больших концентраций на плотность состояний. При коццентрациях при-месей, характерных для полупроводниковых лазеров, нельзя описывать примеси локализованными уровнями, энергии которых отделены от краев зон некоторым промежутком. В этом случае произвольное распределение заряженных примесей в кристалле приводит к флуктуациям потенциала, которые создают хвосты плотности состояний в зоне проводимости и в ва- лентой зоне [4, 5, 32] j  [c.155]

Термин амфотерность происходит от греческого слова амфотерос , что означает двойственный. Это понятие применительно к примеси в полупроводниках впервые ввел Данлэп (1955 г.) при анализе электрических свойств германия, легированного золотом. Оказалось, что примесь золота в одном и том же кристалле — германии — проявляет себя и как донор, и как акцептор. Под амфотерностью элементов принято понимать их способность образовывать положительные и отрицательные ионы. Если рассматривать амфотерные примеси в полупроводниках, то оказывается, что таких примесей не так уж много, но все же достаточно, чтобы выделить их в самостоятельный класс. К амфотерным примесям в полупроводниках относят примеси, которые в одном и том же матери-  [c.118]

В ряде случаев рост эпитаксиальных пленок GaAs может сопровождаться нежелательным легированием глубокими примесями или появлением уровней собственных дефектов. Наличие глубоких примесей в полупроводнике может приводить к захвату носителей заряда и уменьщению их времени жизни. Эти эффекты оказывают влияние на многие характеристики полупроводниковых приборов, изготовленных из этого материала, например, на токи утечки, щумы диодов и транзисторов они проявляются при переходных процессах во всех транзисторах, диодах и источниках света на основе GaAs. В транзисторах, изготовленных из GaAs, эффекты захвата связываются с примесью кислорода.  [c.137]

Для ряда практических применений (создание туннельных диодов, светодиодов и других полупроводниковых приборов) необходимо получать сильно легированные полупроводники. Поэтому представляется важным знание предельной растворимости Сзтах примесей в материале (в твердой фазе). Под этим термином подразумевается концентрация примеси в насыщенном твердом растворе, образованном основным веществом и данной примесью. Если концентрация примеси в полупроводнике меньше Сзтах, то примесь распределяется в кристаллической решетке моно-атомно если превышает С тах, то, как показывают исследования, в выращиваемом кристалле появляются структурные нарушения, например, макроскопические частицы инородной фазы, что сопровождается резким ростом, в первую очередь, плотности дислокаций. При легировании кристаллов большими концентрациями примесей важно иметь запас в рас-  [c.278]


При повышении концентрации примесных атомов электрон, локализованный вблизи одного из атомов примеси, начнет испытывать воздействие и со стороны других примесных атомов. В результате его энергетический уровень, оставаясь дискретным, несколько сдвйнется по энергии. Величина этого сдвига зависит от расположения других примесных атомов относительно центра локализации она тем больше, чем больше атомов примеси отстоит от центра на расстояние, не превышающее примерно Го (го — так называемый радиус экранирования, в случае слабо легированных полупроводников го>ав, где ав — радиус боровской орбиты в ир исталле см. гл. II, 8). Но распределение примеси в решетке никогда не бывает строго упорядоченным. Всегда имеют место локальные флюктуации концентрации. Поэтому и сдвиг энергии примесного уровня относительно дна свободной зоны Ес оказывается случайным и различным в разных точках образца. Это приводит к тому, что в запрещенной зоне вместо одного дискретного уровня появляется некоторый их набор. Такое явление называется классическим уширением уровней (см. рис. 44, б Ес—АЕ — энергия бывшего уровня примеси). Изложенная ситуация отв1бчает промежуточно легированному полупроводнику.  [c.120]

В сильно легированном полупроводнике можно добиться условия, при котором Го ав, где ав —радиус первой боров-ской орбиты 1ВО Дородоподо1бного иона в кристалле. Указанное соотношение между го и Зв при экранировании приводит к исчезновению дискретных уровней, создаваемых примесным ионом. Поэтому если исчезают примесные уровни, то не может существовать примесная область спектра. Попутно поясним, что роль экранирования определяется и концентрациями свободных носителей заряда, и концентрацией заряженных атомов примеси. Но указанные величины зависят от характера энергетического спектра системы—от того, существуют ли и в каком количестве примесные уровни. Поэтому задача сводится к тому, что сам энергетический спектр сильно легированного полупроводника следует определять самосогласованным полем.  [c.123]

Контролируя скорость вытягивания и температуру расплава, можно поддерживать диаметр и удельное сопротивление растущего кристалла практически постоянными (рис. 1). Легирование кремния или германия элементами III и V групп осуществляется введением в расплав соответствующей примеси или лигатуры с большим содержанием соответствующей примеси. Последнее определяется растворимостью (рис. 2) и коэффициентом диффузии примеси в монокристалличе-ском полупроводнике (табл. 5). Лигатуру, в свою очередь, получают мето-  [c.401]

С. на основе гомопереходов в прямозонных полупроводниках, легированных т. в. мелкими примесями (см. Примесные уровни), имеют существ, недостаток — сильное поглощение излучения внутри кристалла (коэф. поглощения а — 10 см Ч. Снижение потерь па межзонное поглощение достигается уменьшением энергии излучения за счёт Компенсации примесей в активной области (напр., в эпитаксиальной р — л-структуре GaAs, легированной Si). При сильном легировавии и компенсации хаотически расположенный в пространстве заряд примесей создаёт искривление границ зон, при к-ром локальная ширина запрещённой зоны остаётся постоянной (см. Сильнолегированный полупроводник). Это приводит к тому, что в распределении плотности состояний появляются участки при энергиях ниже зоны Проводимости и выше валентной зоны — т. н. хвосты плотности состояний, пространственно разделённые в обеих зонах. В С. с такой структурой в излучат, рекомбинации принимают участие глубокие и удалённые группы состояний, При этом излучаемые фотоны характери-  [c.466]

Структура электронных спектров кристаллов при обычных условиях сильно размыта под действием тепловых колебаний атомов кристаллич. структуры, и в большинстве случаев наблюдаются широкие размытые спектральные полосы. При гелиевой темп-ре. можно наблюдать дискретные спектральные линии, к-рые возникают при прямых переходах между экситонными зонами, при переходах между дискретными уровнями электронов и дырок, локализованных на дефектах решётки, либо на акцепторных или донорных примесях в гомеополярных полупроводниках (см. Спектроскопия кристаллов). Помимо колебаний атомов на форму и ширину экситонных линий влияют тип связи в кристалле, его зонная структура и микроструктура экситонного возбуждения. В сильнолегир. полупроводниках ширина линии может зависеть от степени легирования. Дискретные линии наблюдаются и при комнатной темп-ре в поглощении и люминесценции кристаллов, содержащих ионы переходных металлов (хром, железо, палладий, платина и др.), лантанидов и трансурановых элементов, имеющих незаполненные d- и /-оболочки. В кристаллах высокого качества линии таких примесных ионов, напр, линия иона в рубине и линия в иттрий-алюминиевом  [c.263]

Практическое значение имеют сплавы германия н кремния, так как работа полупроводникового выпрямителя или усилителя основана на том, что в кристалле полупроводника создаются смежные области с разным типом проводимости— электронной или -типа и дырочной или проводимостью /J-типа (р обозначает слово positive, указывающее на положительный знак заряда). Граница этих областей, так называемый электроннодырочный или п — р-переход, является основным звеном полупроводникового прибора. Такой переход можно создать только искусственным введением в полупроводник заданных примесей в строго дозированном количестве, т. е. легированием очищенного полупроводника примесями. Примесями могут быть сурьма, галлий, фосфор, алюминий, золото и др. При введении различных примесей в строго определенной, обычно очень малой дозе (порядка 10 —10 %), можно получать сплавы полупроводников с необходимыми электрическими свойствами.  [c.177]

Примесные полупроводники. В 81, легированном (> 1018 атомов) Ы или Р, Аз, 8Ь,. и в нек-рых др. нолу-ироводниках в широком интервале темп-р наблюдался Э. п. р., обусловленный электронами проводимости и поэтому сходный с эффектом в металлах 1 < 10 сек. При малых концентрациях примесей и низких темн-рах наблюдается также Э. п. р., вызываемый электронами, связанными с донорами. Линия поглощения обнаруживает при этом сверхтонкую структуру, обусловленную ядерным спином примесного атома. Гх очепь велико и измеряется в нек-рых случаях мш1утами.  [c.502]

Ое) примесная зона сливается с зоной проводимости (в случае акцепторной 11римеси - с валентной зоной), и ширина запрещенной зоны уменьшается. В таких "сильно легированных" полупроводниках грани1№>1 этих зон оказываются нерезкими, в области ранее запрещенных энергий появляются так называемые "хвосты состояний , которые связаны со случайными колебаниями концентрации примеси в кристалле.  [c.105]

D2.11. р-л-переход. Лолулроволниковый диод, р-л-переход образуется, когда в полупроводнике соседствуют Области, одна из которых содержит акцепторные примеси (р-область), а другая — донорные (л-область). Это достигается путем легирования (внедрения примесей в кристаллическую решетку) разных областей кристалла примесями разных  [c.121]

Рассмотрим общую модель полупроводника, легированного донорньши примесями. В единице объема чистого идеального кристалла хаотически распределены ) N X, фиксированных притягивающих центров с зарядами +е и такое же число дополнительных электронов с зарядами —е. Предполагается, что каждый центр с зарядом +е может образовать связанное состояние с одним из дополнительных электронов, обладающих зарядом —е ). Если бы примесь находилась не внутри полупроводника, а в пустом пространстве, то энергия связи электрона была бы просто равна первому ионизационному потенциалу атома примеси, равному 9,81 эВ для мышьяка. Однако (и это имеет решающее значение для теории полупроводников) благодаря тому, что примесь находится в полупроводнике, энергия связи значительно уменьшается (до 0,013 эВ для мышьяка в германии). Это происходит по следующим причинам.  [c.200]

Наиболее распространенный метод определения коэффициента разделения основан на измерении концентрации свободных носителей заряда в чистом и легированном полупроводнике (предполагается, что примеси электрически активны). Схема определения непосредственно вытекает из самого смысла Ко = Сз/С , то есть сводится к определению концентрации примеси в твердой фазе, соответствующей ее заданной концентрации в жидкой фазе. Пусть навеска электрически активной примеси р,-вводится в расплав предварительно очищенного слитка при положении Хо фронта кpи тaллизaции (рис. 5.3 кристаллизация полупроводникового материала проводится методом зонной плавки (см. ниже)). Если концентрация введенной примеси N1 = С5 заметно превышает разность  [c.196]


Тем не менее ионная имплантация и радиационное легирование кристаллов сейчас — важные и быстро развивающиеся области технологии полупроводников. Так как ионная имплантация обеспечивает более точный контроль общей дозы легирующей примеси в диапазоне см , там, где это возможно, ею заменяют процессы диффузионного легирования. Очень интенсивно ионная имплантация используется для формирования сверхбольших интегральных схем. Метод радиационного легирования используется для получения кремния, необходимого для производства силовых приборов, где в качестве главного требования выступает высокая однородность распределения примесей в кристалле. Метод радиационного легирования также находит все большее применение и для легирования других полупроводниковых материалов. Так, им осуществляют легирование Ge галлием и мышьяком, InSb оловом, GaAs германием и селеном и т. д.  [c.266]

Кроме того, когда речь идет о сильном легировании полупроводников электрически активной примесью (легирующие примеси), то надо иметь в виду, что, например, в элементарных полупроводниках довольно часто наблюдается несоответствие между концентрациями носителей заряда и электрически активной примеси п р) < Сзтах- Поэтому было введено также понятие предельной растворимости электрически активной примеси. Предельной растворимостью электрически активной примеси называют максимальную концентрацию электрически активной примеси в твердой фазе, которую можно создать введением данной примеси. Экспериментально можно определить измеряя зависимость концентрации электрически активной примеси в твердой фазе С,- от концентрации примеси в расплаве С . Если С,- измерить с помощью эффекта Холла (см.гл. 5), то есть электрическим методом, а полную концентрацию примеси в твердой фазе s измерить каким-либо другим методом, например, радиоактивным или масс-спектроскопическим, то общий вид зависимостей С и С5 от С1 может быть представлен графиком, изображенным на рис. 7.8. В области достаточно малых значения С и С,- совпадают однако, начиная с некоторых С1, кривая С,-(С ) обнаруживает тенденцию к насыщению, в то время как С5(С ) продолжает расти. Значение и есть предельная растворимость электрически активной примеси.  [c.279]

При одновременном введении в полупроводник двух электроактивных добавок они при определенных условиях взаимно влияют на свою предельную растворимость в полупроводнике. Возможны различные случаи взаимодействия примесей при совместном легировании.  [c.280]


Смотреть страницы где упоминается термин Примеси в полупроводниках легирование : [c.111]    [c.144]    [c.356]    [c.185]    [c.169]    [c.579]    [c.502]    [c.431]    [c.102]    [c.422]    [c.461]    [c.6]    [c.131]    [c.136]   
Физика твердого тела Т.2 (0) -- [ c.210 , c.211 ]



ПОИСК



Легирование

Легирование полупроводников

Полупроводники

Полупроводники примеси в них

Прима

Примеси



© 2025 Mash-xxl.info Реклама на сайте