Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Керамика тонкая

При разделительной резке плазменной струей сопло плазмотрона располагают в непосредственной близости (1,5. .. 2 мм) от поверхности заготовки и производят локальное выплавление или сжигание материала (см. рис. 5.12, а). Ширина реза при этом весьма незначительна - 1. .. 2 мм, шероховатость может составлять Rz 30. .. 40. Плазменной струей, полученной в столбе дугового разряда независимой дуги, разрезают неэлектропроводящие материалы (например, керамику), тонкие стальные листы, алюминиевые и медные сплавы, жаропрочные сплавы и т.д. При плазменной резке используют аргон, его смесь с водородом, воздух и другие газы.  [c.252]


Плазменной струей, полученной в столбе дугового разряда независимой дуги, разрезают неэлектропроводные материалы (например, керамику), тонкие стальные Листы, алюминиевые и медные сплавы, жаропрочные сплавы и т. д. При плазменной резке используют аргон, его смесь с водородом, воздух и другие газы.  [c.437]

Наиболее широко используют алмазные резцы для тонкого точения и растачивания деталей из сплавов алюминия, бронз, латуней и неметаллических материалов. Алмазный инструмент применяют для обработки твердых материалов, германия, кремния, полупроводниковых материалов, керамики, жаропрочных сталей и сплавов. При использовании алмазных инструментов повышается качество обработанных поверхностей деталей. Обработку ведут со скоростями резания более 100 м/мин. Поверхности деталей, обработанные в этих условиях, имеют низкую шероховатость и высокую точность размеров.  [c.280]

Электронно-лучевой метод перспективен при обработке отверстий диаметром 1 мм—10 мкм, прорезании пазов, резке заготовок, изготовлении тонких пленок и сеток из фольги. Обрабатывают заготовки из труднообрабатываемых металлов и сплавов, а также из неметаллических материалов рубина, керамики, кварца, полупроводниковых материалов.  [c.413]

Тонкая радиотехническая керамика  [c.382]

Материалом электродов может служить оловянная, свинцовая или алюминиевая фольга толщиной 10—50 мкм. Фольгу смазывают тонким слоем химически чистого конденсаторного вазелина, конденсаторного масла или другого аналогичного вещества, обладающего малыми диэлектрическими потерями (1е бсЗ-10 ), и накладывают на образец, тщательно притирая ее затем к поверхности образца для удаления излишков смазки и для достижения плотного контакта без воздушных включений. Необходимо следить, чтобы смазка не попадала на края и торцы образца. Для керамики,  [c.64]

Хорошо известна роль граничных поверхностей раздела разнородных компонентов. Изучение взаимодействия между металлами, силикатами, полимерами, окисной керамикой и другими компонентами требует тонких экспериментов с использованием новейшей аппаратуры.  [c.142]

В качестве фильтрующей перегородки можно использовать фильтрующую керамику, огнеупорный кирпич (распиленный пополам), микропористый пластик ДК-7 в виде пластин толщиной 3 мм, технический войлок и другие материалы. Нижнюю часть аппарата изготовляют из стали Ст.З толщиной 4—5 мм, верхнюю — из более тонкого листа.  [c.155]


Изготовление элементов кристаллических полупроводниковых приборов (кристаллические выпрямители, диоды, кристаллические усилители — триоды и транзисторы), применяемых при изготовлении сложных устройств автоматики, телемеханики, счетно-решающих устройств. Изготовление термисторов, применяемых в автоматической и сигнальной аппаратуре. Изготовление фотодиодов и фотосопротивлений. Изготовление пленочных сопротивлений (тонкие пленки Ое на стекле или керамике) с от 1000 Ом до нескольких МОм.  [c.346]

Самой большой чувствительностью обладают так называемые биморфные пьезоэлементы (фиг. 5), состояш,ие из двух тонких пластинок керамики, работающих на изгиб [1 ]. К их недостаткам относятся малая прочность и чувствительность к составляющим вибрации, перпендикулярным к измеряемым, а также чувствительность к вращательным колебаниям.  [c.401]

Сверление отверстий в твердой керамике является непростой задачей при обычном способе требуется наличие алмазного инструмента, а при других существующих методах трудности связаны с размером отверстия в диаметре, равным десятым долям миллиметра. Эти трудности особенно ощутимы, когда толщина обрабатываемой пластины больше, чем диаметр отверстия. Отношение глубины отверстия (толщины материала) к его диаметру является мерой качества получения тонких отверстий оно составляет 2 1 при обычном сверлении и около 4 1 при ультразвуковом методе, используемом при сверлении керамики и других тугоплавких материалов.  [c.145]

Между первым и вторым конвективными газоходами расположены два циклона с коэффициентом улавливания 95%, изготовленные из углеродистой стали и облицованные внутри тонким слоем керамики для защиты от эрозионного износа.  [c.231]

Что касается определения расчетным путем температуры из--лучающей поверхности исходя из условий теплообмена между тонким слоем горящей смеси и поверхности кладки (керамики), то такой метод расчета пока не разработан.  [c.266]

Этим способом можно спаивать между собой детали, изготовленные из разных металлов, а также детали из стекла и керамики, предварительно покрытые тонким металлическим слоем.  [c.908]

Внутреннее сплошное металлическое ядро должно быть жестко соединено с наружной оболочкой, но притом так, чтобы материал, служащий для конструктивной реализации этого соединения, был плохим проводником тепла например, трубка на рис. 120, соединяющая внутренний шар с металлической оболочкой, должна быть сделана из целлулоида, эбонита, керамики или, в крайнем случае, из нихрома, инвара или нержавеющей стали в последнем случае трубка должна иметь, насколько возможно, тонкие стенки. Пробка, необходимая, если внутренний шар полый и служит для наливания ртути, также должна быть из плохого проводника тепла. Необходимо принять все меры к устранению тепловых мостиков между внутренним ядром и наружной оболочкой.  [c.375]

Сухое капиллярно-пористое тело представляло собой полый прямоугольный параллелепипед, изготовленный из листовой меди и покрытый тонким слоем пористой керамики. В торцовой стороне тела имелись два патрубка для ввода и выпуска охлаждающей воды. В поверхности граней опытных тел заделывались медно-константановые термопары. Во время эксперимента средние температуры поверхностей опытных тел поддерживались одинаковыми.  [c.76]

Клеевые соединения по сравнению с другими видами неразъемных соединений (заклепочными, сварными и др.) имеют ряд преимуществ возможность соединения различных материалов (металлов и сплавов, пластмасс, стекол, керамики и др.) как между собой, так и в различных сочетаниях атмосферостойкость и стойкость к коррозии клеевого шва герметичность соединения возможность соединения тонких материалов снижение стоимости производства экономия массы и значительное упрощение технологии изготовления изделий.  [c.495]

Плазменной струей, полученной в столбе дугового разряда независимой дуги, разрезают нез)лектропроводные материалы (напри мер, керамику), тонкие стальные листы, алюминиевые и медные сплавы, жаропрочные сплавы и т. д. При плазменной резке используют аргон, его смесь с водородом, воздух и другие газы. Скорость резки плазменной дугой при прочих равных условиях выше скорости резки плазменной струей. Плазменную резку выполняют специальным резаком, называемым плазмотроном.  [c.210]


Точный платиновый термометр сопротивления, который обсуждался в предшествующих разделах, является тонким и хрупким прибором. Механические сотрясения, даже не столь сильные, чтобы повредить кожух, вызывают напряжения в чувствительном элементе и увеличивают его сопротивление. В некоторых конструкциях термометров повторные сотрясения в осевом направлении могут привести к сжатию витков проволоки и в конечном счете к замыканию между витками. Помимо этих деликатных приборов, существуют также технические платиновые термометры сопротивления, конструкция которых выдерживает использование в нормальных производственных условиях. Выпускается множество самых различных типов технических термометров. Общим для всех них является то, что чувствительный элемент прочно закреплен, а часто просто заделан в стекло или керамику. Это Делает термометр исключительно прочным, но в то же время пбнижaJeт стабильность его сопротивления. Причин относительной нестабильности сопротивления по сравнению с точным лабораторным термометром две. Во-первых, чередование нагрева и охлаждения приводит к тому, что вследствие различия в коэффициенте теплового расщирения у платины и материала, охватывающего проволоку, чувствительный элемент испытывает напряжения, приводящие к изменению его сопротивления, и возникают остаточные деформации, которые также сказываются на величине сопротивления. Влияние механических напряжений можно снять отжигом при достаточно высокой температуре, однако остаточные деформации устранить, разумеется, невозможно. Во-вторых, при высоких температурах происходит изменение сопротивления вследствие диффузионного загрязнения платины окружающим материалом. Хотя воспроизводимость результатов, получаемых с помощью технических платиновых термометров сопротивления, уступает воспроизводимости прецизионных платиновых термометров сопротивления, она существенно лучще, чем у термопар, работающих в условиях технологического процесса. По этой причине многие миллионы платиновых термометров сопротивления используются в технике, промыщленности, авиации и т. д.  [c.221]

Сварке этим способом поддаются тугоплавкие, жаропрочные сплавы, металлокерамика, керамика. Для сварки тонких деталей из медных, алюминиевых и никелевых сплавов, а твкже коррозионно-стойких сталей применяют токи радиочастотного диапазона (50—200 кГц)  [c.165]

Этот метод интенсификации позволяет с помощью однофазного теплоносителя охлаждать сплошную стенку, подверженную воздействию больших тепловых потоков, например при конвективном охлаждении стенок ракетных двигателей (рис. 1.8) и лопаток их газовых турбин, элементов электронной аппаратуры и других теплонапряженных устройств. В частности, за счет охлаждения прокачкой воды через проницаемую подложку может быть обеспечена надежная рабрта лазерного отражателя. Такой способ охлаждения в настоящее время - единственный при малых размерах или сложной форме нагреваемых конструкций, в которых невозможно выполнить каналы для охладителя. Например, лопатки малых газовых турбин ракетньи двигателей с максимальной толщиной профиля порядка 3 мм, хордой около 2 см и длиной от 1 до 2 см обычно не охлаждаются, что ограничивает температуру газового потока и эффективность таких турбин. Изготовление лопаток из волокнистого металла 1 (рис. 1.9), покрытого снаружи тонким герметичным слоем керамики 2 и охлаждаемого продольным потоком газа, вытекающего через вершину, позволяет снять эти ограничения.  [c.12]

Вторая технологическая схема отличается от первой тем, что компоненты керамики (или их часть) предварительно синтезируют спеканием из окислов и других соединений. Синтезированный компонент называют иногда спеком. Если для керамики данного состава требуется несколько видов поликристаллов, то их синтезирование может вестись раздельно или в некоторых случаях совместно. Полученные сиекн подвергаются повторному тонкому помолу при этом иногда также в состав массы вводят новые вещества или смешивают несколько спеков с добавками. Последующие этапы технологии изготовления керамических элементов в основном сохраняются такими же, как и в первой схеме, однако окончательный обжиг изделий проводят при температуре иной, чем при спекании заготовок.  [c.143]

Между вторым и третьим изданиями учебника прошло четыре года. За это время наша промышленность стала использовать в массовом производстве новые материалы, например фторорганические соединения, обладаюш,ие нагревостойкостью до 300 С, новые виды электротехнической керамики с повышенной механической прочностью и хорошими электрическими свойствами, полупроводниковые изделия (германиевые диоды и триоды), тонкие листовые текстурированные стали, магнитную керамику и специальные сплавы. Авторы стремились в третьем издании учебника отразить все достижения науки в области электротехнических материалов. Но при этом, руководствуясь тем, что в учебниках должны излагаться основы соответствующей отрасли науки и передовой опыт социалистического строительства, из учебника был изъят устаревший материал и введены уточнения и дополнения на осноге опыта учебной работы советских и зарубежных вузов. Кроме того, из третьего издания были исключены методики испытания материалов, рассматриваемые в специальных руководствах.  [c.6]

Большинство твердых и жидких тел имеет сплошной (непрерывный) спектр излучения, т. е. излучают энергию всех длин волн от О до оо. К твердым телам, имеющим непрерывный спектр излучения, относятся непроводники и полупроводники электричества, металлы С окисленной шероховатой поверхностью. Металлы с полированной поверхностью, газы и пары характеризуются селективным (прерывистым) спектром излучения. Интенсивность излучения зависит от природы тела, его температуры, длины волны, состояния поверхности, а для газов — еще от толщины слоя и давления. Твердые и жидкие тела имеют значительные поглощательную и излучательную способности. Вследствие этсго в процессах лучистого теплообмена участвуют лишь тонкие поверхностные слои для непроводников тепла они составляют около 1 мм для проводников тепла — 1 мкм. Поэтому в этих случаях тепловое излучение приближенно мо) но рассматривать как поверхностное явление. Полупрозрачные тела (плавленый кварц, стекло, оптическая керамика и др., газы и пары) характеризуются объемным характером излучения, в котором участвуют все частицы объема вещества. Излучение всех тел зависит от температуры. С увеличением температуры тела его энергия излучения увеличивается, так как увеличивается внутренняя энергия тела. При этом изменяется не только абсолютная величина этой энергии, но и спектральный состав. При увеличении температуры повышается интенсивность коротковолнового излучения и уменьшается интенсивность длинноволнового излучения. В процессах излучения зависимость от температуры значительно большая, чем в процессах теплопроводности и конвекции. Вследствие этого при высоких температурах основным видом переноса может быть тепловое излучение.  [c.362]


На нагревательном микроскопе на оптической скамье МНО-2 определена область температур, в которой композиции образуют глазуроподобные слои на различных керамических материалах. Полученные результаты позволили отобрать композиции, которые обнаруживают хорошее сцепление с керамикой и распределяются по ее поверхности в виде тонкого сплошного слоя на MgO и А12О3 при температурах 1500—1600°С и на ЗЮз при 1000—1200° С (табл. 1).  [c.139]

Существует большое количество материалов, у которых одновременно сочетаются кристаллическая и стеклообразная формы. К таким материалам, получившим широкое применение в электронике, относятся, в частности, керамика и ситаллы. В керамике в качестве кристаллической фазы используются природные и искусственные минералы (корунд, рутил, кристоболит и др.)-в качестве стекловидной — различные стекла. Ситаллы получают частичной кристаллизацией стекол. С этой целью в стекло вводят небольшие добавки веществ, способные образовывать зародыши при кристаллизации, равномерно распределеииые в объеме стекла. При соответствующих условиях из этих зародышей вырастает огромное число мелких кристалликов (0,1—1 мкм), сросшихся друг с другом через тонкие аморфные прослойки стекла.  [c.9]

Попытка дать научное определение керметам встретила затруднения. Вначале предложили считать керметами гетерогенную (неоднородную) композицию металлов или сплавов с одной или более керам иче-скими фазами. Однако металловеды возражали против такой формулировки, так как в этом случае дис-персионно-упрочненные материалы типа САП, в которых чрезвычайно тонкая окись алюминия (окисная керамика) диспергирована по границам зерен алюминия (металла), были бы отнесены к керметам.  [c.85]

КЭП Ni—Si применяют вместо хромового покрытия при изготовлении различных ножей, метчиков и лезвий срок службы изделий при этом повышается в несколько раз. Описаны детали, изготовляемые гальваническим наращиванием покрытия никелем, содержащие карборунд, онсэды, алмаз, металлы, керамику. Сообщается об использовании гальванических покрытий керметами при высоких температурах и отмечаются их преимущества перед покрытиями, получаемыми плазменным напылением большой выбор композиций, равномерная толщина, возможность покрытия профилированных изделий, более тонкая отделка поверхностц,  [c.120]

Предварительные замечания. Формование тонких порошков и спекание их позволяет получать так называемые изделия из порошковых материалов ). Выше уже говорилось о пресс-норошковых пластмассах, о керамике. В данном параграфе обсуждаются материалы, получаемые из металлических порошков (порошковая металлургия) и из смесей металлических порошков с порошками окислов (металлокерамические и керамико-металлические материалы). В разделе 14 4.II такие материалы уже упоминались. При помощи порошковой технологии можно получить такие материалы, которые либо вообще иначе получить невозможно (высокопрочные или жаропрочные композиты), либо получить их очень затруднительно (тугоплавкие сплавы). Вследствие применения порошковой технологии происходит удешевление производства таких ма1ериалов.  [c.369]

Как показал С. Е. Роспковский 157], форма горелки и связанные с ней аэродинамические условия вблизи поверхности излучения также играют свою роль. Таким образом, при поверхностном горении мы сталкиваемся с процессом косвенного направленного теплообмена в его почти идеальной форме. Следует, однако, подчеркнуть, что в данном случае в печи как бы существуют две зоны. Первая зона представляет собой зону теплообмена вблизи керамической поверхности между тонким слоем горящей смеси и этой поверхностью, причем, можно считать, что этот тонкий слой горящей смеси практически не участвует в теплообмене с поверхностью подлежащего нагреву материала и другими элементами рабочего пространства печи. Условно говоря, эта зона представляет собой теплогенератор. Вторая зона — это собственно печь, т. е. зона теплообмена между раскаленной керамикой, поверхностью нагрева и остальными элементами кладки при наличии лучепоглощающей среды, имеющей какую-то промежуточную температуру между горящей смесью (и близкой к ней температурой керамической поверхности) и нагреваемым материалом. Такое представление является условным, однако, по-видимому, оно отвечает конкретным условиям работы подобных печей, поскольку температу а горящей горючей смеси совершенно иная, чем газовой атмосферы печи. Например, при температуре горящей смеси у поверхности керамики порядка  [c.256]

В результате экспериментальных исследований, проведенных в ЛЭТИ, доказана возможность рал,иоинтроскопии изделий из керамики, абразивов, ферритов, графита (тонкие изделия), мутного стекла, шамота, бетона, стеклопластиков. При этом обнаружены следующие структурные элементы неравноплотности, трещины (в том числе микротрещины), раковины, расслоения, посторонние включения, арматура и т. д.  [c.65]

Для оценки перспективности способа сушки влажные материалы делят на шесть основных групп [25] истинные и коллоидные растворы, эмульсии и суспензнп пастообразные материалы, не перекачиваемые насосом пылевидные, зернистые и кусковые материалы, обладающие сыпучестью во влажном состоянии тонкие гибкие материалы (ткани, пленка, бумага и т.п.) штучные массивные по объему материалы и изделия (керамика, штучные строительные материалы, изделия из древесины и т.п.) изделия, подвергающиеся сушке после грунтования, окраски, склеивания и других поверхностных работ.  [c.177]

Они могут возникнуть в месте сопряжения вводнсй металлической трубки для термопары с ядром. Применение тонких трубок плохо проводящих тепло металлов позволяет свести вредный эффект мостика к приемлемому минимуму. Можно рекомендовать одевание вводной металлической трубки теплоизолятором, например резиной и т. д. (рис. 116). Радикальным приемом было бы изготовление трубок из эбонита, дерева, пластмассы, фарфора или керамики.  [c.339]

В керамике, состоящей из зёрен с полупроводниковой проводимостью и тонких изолирующих слоёв, наблюдается увеличение эфф. диэлектрич. проницаемости е фф на низких частотах. Кроме того, вэфф изменяется при приложении слабых электрич. попей , что связано с зависимостью от поля Е толщины обеднённого слоя.  [c.475]

ХОЛЛА ДАТЧИК — полупроводниковый прибор, преобразующий на основе Холла эффекта индукцию внеш. магн. поля в электрич. напряжение. Представляет собой тонкую пластинку (или плёнку) полупроводника (напр., Si, Ge, GaAs, InSb), укреплённую (напылённую) на прочной подложке из диэлектрика (слюды, керамики, феррита), с четырьмя электродами для подведения тока и съёма эдс Холла (Fx).  [c.413]

Материалы фильтрующих элементов. Фильтрующая перегородка основного фильтра может быть изготовлена из тканей, пористых нетканых материалов, фильтрующей бумаги, фетра, керамики, пористых пластмасс, тонких листовых материалов типа пергамент, а также в виде комбинированной перегородки, состоящей из нескольких слоев различных материалов, например ткани и фетра. В качестве фильтрующих тканей могут быть использованы хлопчатобумажная ткань фильтросванбой и шелк марки Г.  [c.347]

Индий. Индий применяется как составная часть в амальгамах для люминесцентных ламп, в качестве излучающей добавки в газоразрядных ртутных лампах с иодвдами металлов и др. Индий и его сплавы являются превосходными низкотемпературными припоями, особенно для нанесения тонких пленок на стекло, кварц и керамику расплавленный индий хорошо смачивает стекло и способен проникать в тонкие слои металлов, предел прочности таких соединений при растяжении составляет 3,4-10 Па и обеспечивает хороший электрический контакт.  [c.91]


Смотреть страницы где упоминается термин Керамика тонкая : [c.315]    [c.380]    [c.387]    [c.148]    [c.432]    [c.530]    [c.85]    [c.186]    [c.164]    [c.191]    [c.191]    [c.53]    [c.469]   
Техническая энциклопедия Т 10 (1931) -- [ c.95 ]



ПОИСК



Высокоглиноземистая тонкая керамика

Керамика

Керамика вакуумная тонкая

Классификация изделий тонкой керамики

Тонкая радиотехническая керамика



© 2025 Mash-xxl.info Реклама на сайте