Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализ динамический процесса торможения

Повышение быстроходности современных машин приводит к необходимости выполнения при проектировании машинных агрегатов уточненного анализа динамических процессов, возникающих при разбеге, торможении, изменениях скорости и нагрузки исполнительного органа. Реальные механизмы характеризуются потерями на трение в элементах сопряжений, что необходимо учитывать при проведении уточненных динамических расчетов.  [c.226]


Анализ представленной экспериментальной осциллограммы показывает, что в системе при разгоне и торможении возникают динамические процессы, вызывающие значительные пиковые давления. Во время открывания в полости между насосом и реверсивным золотником возникает пиковое давление 1, связанное с опережением включения нагрузки насоса по отношению к началу открывания проходного сечения реверсивного золотника, величина этого пика определяется временем опережения и характеристикой предохранительного клапана. В начальный период разгона жидкость попадает в напорную полость цилиндра, через малое проходное сечение закрытого в предыдущем цикле осевого дросселя, что ухудшает условия разгона, а после начала перемещения поршня и до полного открытия проходного сечения дросселя вызывает непроизводительные потери напора. В процессе разгона в напорной магистрали возникают колебания жидкости, проявляющиеся на осциллограмме в колебаниях давлений 7 и 5. При торможении клапана в полости между осевым дросселем и поршнем возникает пиковое тормозное давление 4, почти вдвое превышающее номинальное давление насоса, что объясняется несовершенным конструктивным решением тормозного устройства и неудачным выбором закона изменения его проходного сечения в функции перемещения поршня. Существующий тормозной режим не обеспечивает плавного и точного подхода клапана к конечному положению. Во время торможения масса жидкости в сливной магистрали за осевым дросселем продолжает движение по инерции, что приводит к разрыву сплошности жидкости. Характер изменения исследуемых параметров при разгоне и торможении во время закрывания клапана аналогичен, а изменение их величин определяется переменой активных площадей поршня, на которые воздействует напорное и тормозное давление.  [c.138]

Критерии динамического подобия по-разному влияют иа динамику поршня, а следовательно, и на процесс торможения. С целью установления этого влияния были проведены теоретические и экспериментальные исследования. В период движения поршня, в том числе и в период торможения, динамика пневматического устройства описывается системой уравнений (92), (96) и (148). Эта система подробно исследована в гл. II для случая движения поршня из одного крайнего положения в другое, без учета торможения. Чтобы использовать ее для анализа процесса торможения, необ-  [c.256]


Данный комплект типовых математических моделей, допускающий дальнейшее расширение, позволяет решать практически все динамические задачи, возникающие в процессе проектирования систем привода, а именно расчет переходных процессов пуска и торможения расчет переходных реакций на изменение нагрузки расчет реакций на стационарные случайные и периодические возмущения анализ устойчивости и выбор параметров корректирующих элементов для замкнутых систем привода (регулируемых, следящих, адаптивных).  [c.95]

Исполнительные механизмы гусеничного экскаватора работают в резко переменном циклическом нагрузочном режиме. Производительность экскаватора существенно зависит от четкости и быстроты выполнения операции подъема и опускания ковша. Переходные процессы пуска, реверса и торможения электропривода характеризуют статические и динамические нагрузки подъемного механизма, а также четкость и быстроту выполнения производственных операций. Для качественной и количественной оценки показателей работы этого механизма производится анализ статических и динамических характеристик электропривода посредством математического моделирования.  [c.411]

При диагностировании гидросистемы контролируются параметры пл — угловая скорость планшайбы — давление у насоса — давление на входе гидромотора Qq — расход насоса Ок.вых — расход на сливе предохранительного клапана Мгм — момент на валу гидромотора Рзаж, раз — давления в системе зажима и разгрузки планшайбы соответственно . Si зол и б зоя — перемещения золотников гидропанели. Знак + свидетельствует о том, что величины указанного параметра находятся в пределах, близких к нормальным знак — указывает на значительное отклонение параметра от нормальных значений. Анализ данной схемы подтверждает, что при выполнении проверок и измерении указанных параметров представляется возможным обнаружение основных дефектов. На схеме основная цепочка работоспособности проходит но линии параметров СОпл дв, Pi, Рзат, Р раз, Мгм- в этом случае гидравлическая и электрическая системы работоспособны и дефекты находятся в механической системе стола. Обозначенные связи предлагают возможную последовательность поиска дефектов гидросистемы поворотного стола. Для дальнейшего поиска дефектов и анализа работоспособности гидросистемы целесообразно провести проверку электрической системы. При наличии нескольких конечных выключателей ВК, электромагнитов, реле давлений и электрических реле, управляющих работой электропривода и гидроаппаратуры, а также взаимных блокировок, полная схема диагностических проверок представляется достаточно сложной. Однако, для обнаружения причин отсутствия функционирования может использоваться упрощенная схема, показанная на рис. 3, б. Наличие дефектов механической системы стола может быть выявлено проверкой по схеме рис. 3, в. Однако выявление и интерпретирование дефектов механической системы при нефункционирующем объекте усложнено отсутствием контроля необходимых параметров, и в ряде случаев необходима частичная разборка узла или замена некоторых механизмов. Функционирующий стол может быть работоспособен и неработоспособен. Неработоспособный стол характеризуется выходом за допустимые пределы основных параметров, т. е. наблюдается потеря точности, быстроходности, а также значительно возрастают нагрузки в приводе и механизме фиксации. Потеря точности зависит от следующих факторов нестабильности скорости планшайбы в момент фиксации Дшф, нестабильности давления в системе поворота ДРф и разгрузки АР раз, наличия зазоров в механизме фиксации и центральной опоре, нестабильности характеристик жесткости упоров и усилий фиксации. Потеря быстроходности зависит от расхода Q и давления в системе поворота Р и разгрузки Рраз. от наличия колебательного движения планшайбы, характеризуемого коэффициентом неравномерности — б , и от длительности процесса торможения <тор- Высокие динамические нагрузки в приводе и механизме фиксации F определяются величинами скорости поворота и фиксации, давлением в системе поворота и разгрузки,  [c.86]


При анализе пусков и торможений, а также работы гидропривода в условиях установившейся динамики (раскачка тру а, работа н волне плавучего крана и т. п.) возникает необходимость отображать гидропривод динамической схемой и соответствующей этой схеме математической моделью. При таком подходе Лроцессы в крановых механизмах соответствуют процессам в цепных динамических моделях, свойства которых определяются парциальными свойствами отдельных звеньев и подсистем, включая динамическую xieMy гидропривода 141. На рис. II.2.7 изображена динамическая схема гидропривода объемного регулирования с разомкнутым потоком. Модель внешне напоминает упрощенную принципиальную схему соот]ветствующего гидропривода, связи в котором идеализированы (отсутствуют статическая и динамическая податливость и потери давления в гидромашинах и гидролиниях). При этом утечки и перетечки Qy в гидромашинах, гидроаппаратуре и гидролиниях, определяющие статическую податливость — снижение частоты вращения а выходного звена гидропривода под действием установившейся части Л1о2 нагрузки Mg (/) — имитируются расходом Qy через условный дроссель сжимаемость жидкости и. расширение гидролиний, определяющих динамическую податли-  [c.301]


Пневматические приводы (1969) -- [ c.263 ]



ПОИСК



5.206— 211 — Торможени

Анализ динамический

Динамическое торможение

Торможение



© 2025 Mash-xxl.info Реклама на сайте