Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислород жидкости

Усиленная местная коррозия сооружений, частично погруженных в спокойную жидкость (например, водяные затворы газгольдеров, сборники, резервуары, цистерны, не полностью залитые нейтральными растворами или водой), большей частью вызывается неравномерным поступлением кислорода к поверхности металла.  [c.29]

Основная трудность проведения исследования, связанная с влиянием примесей на точку кипения кислорода и других газов, состоит в необходимости обеспечить точно равновесный состав по всей системе жидкость—пар. Поведение примесей практически всегда различно при конденсации и испарении. Как отмечалось выше для неона, примесь оказывает влияние  [c.161]


Неопределенность состава, связанная с наличием различных изотопов и примесей, вызывает необходимость использовать точки кипения (исчезающе малая доля пара) для водорода и неона и точку росы (исчезающе малая доля жидкости) для кислорода (см. разд. III).  [c.414]

Межмолекулярные связи действуют между любыми атомами и молекулами, но они очень малы (порядка Ю Дж/моль). Поэтому молекулярные кристаллы, обусловленные этими силами (твердые инертные газы, молекулы кислорода, азота и др.), отличаются весьма низкой температурой плавления (Не— 1,8 К, Аг — 40 К). Образование прочных структур обусловлено главным образом сильными типично химическими связями, например ковалентной, а силы Ван-дер-Ваальса служат лишь небольшой добавкой . Силами Ван-дер-Ваальса обусловлены обычно адгезионные связи при склеивании, смачивании твердых тел жидкостями и т. п.  [c.10]

Действие конденсационных термометров основано на температурной зависимости давления насыщенных паров жидкости. Термометрические вещества — обычно жидкие газы гелий, водород, неон, аргон, кислород и др. Для определения температуры по измеренному давлению пользуются таблицами или эмпирическими формулами. Диапазон измерения температуры конденсационными термометрами ограничен снизу температурой затвердевания термометрической жидкости, а сверху — температурой критической точки. Высокоточные термометры позволяют измерять температуру с погрешностью не больше 0,001 К.  [c.187]

Результаты сравнения представлены на рис. 6.12, где отражены практически все известные опытные данные о росте паровых пузырьков при кипении 11 различных жидкостей (вода, метанол, этанол, толуол, бензол, четыреххлористый углерод, н-пентан, азот, кислород, водород, гелий) в диапазоне давлений 0,005—10 МПа. Зависимости (6.35а) и (6.36) для роста пузырьков в объеме перегретой жидкости (кривые 7 и 2 на рис. 6.12), конечно, не должны описывать опытные данные о росте пузырьков на стенке. Эти кривые не-  [c.269]

В [22, 76] приводится сравнение расчета по (6.49) с опытными значениями Rq при кипении различных жидкостей (вода, спирты, четыреххлористый углерод, кислород) при давлениях р < 20 кПа. Хотя при выводе этого соотношения используется формула (6.44),  [c.278]

Кавитационная коррозия металла обычно происходит в местах, где кавитационная каверна замыкается (в точке К, рис. V.16). Природа разрушения металла еще недостаточно изучена, но можно утверждать, что разрушение происходит под действием очень мощных механических ударов пузырьков пара и жидкости, химического воздействия богатого кислородом воздуха, содержащегося в воде, и, как утверждают некоторые авторы, электрических полей, возникающих в каверне.  [c.118]


Органические вещества при соприкосновении с кислородом окисляются. Конечным продуктом очистки сточных вод является минерализация органических веществ. Степень загрязненности сточных вод органическими веществами определяется количеством кислорода, необходимого для окисления этих веществ. Биохимическая потребность в кислороде (БПК) измеряется количеством кислорода в единице объема жидкости. На практике биохимическое потребление кислорода (мг/л или г/м ) определяется за 5 и 20 сут и обозначает-  [c.339]

Активный ил представляет собой биоценоз микроорганизмов-минерализаторов, способных сорбировать на своей поверхности и окислять в присутствии кислорода воздуха органические вещества сточной жидкости.  [c.364]

В аэротенки с пневматической аэрацией воздух подается от воздуходувных установок и распределяется в жидкости с помощью специальных аэраторов. Механическая аэрация производится путем перемешивания сточной жидкости в аэротенках механическими устройствами, что сопровождается интенсивным растворением в жидкости кислорода воздуха из атмосферы.  [c.364]

Реальные газы путем понижения температуры и сжатия можно перевести в соответствующие капельные жидкости (жидкий кислород, жидкий азот и т. д.). По мере приближения реального газа к состоянию жидкости расстояния между молекулами уменьшаются, а силы взаимодействия проявляются в большей степени, следовательно, реальный газ все больше отклоняется от идеального.  [c.15]

Решить предыдущую задачу, если плотность отводимого теплового потока равна 180 кВт/м, а кипящей жидкостью является азот или кислород.  [c.283]

Химическое разложение жидкости происходит в результате окисления ее кислородом воздуха, каталитическое действие при этом оказывает температура. Повышение температуры на каждые 8—10°С удваивает окисление минерального масла. Особенно интенсивно жидкость окисляется при наличии в ней растворенного воздуха и механических примесей. Для увеличения срока эксплуатации рабочей жидкости за счет снижения ее химического разложения при проектировании гидросистемы необходимо  [c.143]

Антирады. Известно, что в результате поглощения излучения высокой энергии в органических материалах образуются активные свободные радикалы, способные вызвать цепные реакции с образованием нежелательных продуктов. Поэтому любые методы дезактивации радикалов должны приводить к общему увеличению стойкости жидкости. Так как механизм действия многих антиоксидантов сводится также к дезактивации свободных радикалов, то окислительная и радиационная деструкции являются близкими по механизму реакциями. Практически при облучении жидкостей, содержащих стандартные антиоксиданты, последние быстро распадаются в результате взаимодействия с радикалами, образовавшимися под действием излучения, поэтому в среде, содержащей кислород, жидкость становится очень чувствительной к обычной окислительной деструкции. Мейхони и др. [21 ] было показано, что такие захватчики радикалов, как иодофенол и иодонафталин, при облучении сложных эфиров с разной степенью эффективности влияли на изменения вязкости, хотя они не обеспечивали защиту обычных антиоксидантов от разрушения при облучении дозами 1-10 эрг/г в атмосфере азота.  [c.134]

Жидкость MLO-7415, приготовленная на основе нафтеновых углеводородов и содержащая антиокислитель, ингибитор коррозии и противоизносную присадку, по-видимому, будет работоспособна в течение длительного времени при 316—343° С и в течение 50 ч или более при 37° С в системах, из которых достаточно хорошо удален кислород. Жидкость MLO-7416, приготовленная на основе не полностью насыщенных углеводородов, содержащих конденсированные бензольные кольца, с аналогичными присадками в системах, свободных от кислорода, по-внди-мому, будет работоспособной при 37ГС. Обе жидкости характеризуются хорошей термической стабильностью и смазочной способностью. Установлено, что улучшение этих показателей не обеспечивают ни дальнейшая углубленная переработка, ни фракционирование, ни глубокая депарафинизация.  [c.190]

Более рациональными являются аппараты двукратной ректификации, состоящие из дьух колонн, причем в одной колонне происходит предварительное разделение воздуха на жидкий азот и обогащенную кислородом жидкость, а во второй колонне происходит окончательное разделение на кислород и азот.  [c.16]


Для полноты изложения следует отметить, что существует и ряд других теорий, объясняющих эффект окисления при ультразвуковом облучении жидкостей. Так, например, Портер и Юнг [1631], а также Гриффинг [2930] полагают, что химическое действие ультразвука обусловлено местным нагреванием, возникающим при сильном сжатии маленьких пузырьков газа (см. И настоящей главы) при этом важную роль играет отношение удельных теплоемкостей газа и его теплопроводность. Марбо [3481] считает, что кавитационные силы разрывают связи типа О—Н и при этом образуются ионы Н и ОН, которые и служат причиной последующих химических реакций. Миллер [4882] высказывает предположение, что механизм образования активных радикалов в содержащих кислород жидкостях таков же, каков и при облучении у-лучами.  [c.523]

Коррозия сооружений, частич1го погруженных в спокойную жидкость (например, водяные затворы газгольдеров, сборники, резервуары, цистерны, не полностью залитые нейтральными растворами или водой), большей частью вызывается неравномерным поступлением кислорода к поверхности металла. Наибольшая коррозия при этом наблюдается на некотором расстоянии от ватерлинии, где приток кислорода меньше, чем у поверхности жидкости.  [c.76]

Жидкости содержат растворенные газы, количество которых в равновесных условиях зависит от свойств жидкости и газа, а также от давления и температуры. Зависимость равновесной концентрации z растворенного газа в жидкости от давления для слаборастворимых газов выражается законом Генри z = А (t)p, где р - парциальное давление газа над раствором A(t) -коэффициент пропорционапьности, зависящий от свойств жидкости и газа, а также от температуры. Для большинства жидкостей А (f) уменьшается с увеличением температуры. Очень часто растворимость газа в жидкости характеризуют с помощью коэффициента абсорбции Бунзена а, который равен объему газа, приведенному к О с и 760 мм рт. ст., поглощенному единицей объема жидкости при парциальном давлении газа, равном 760 мм рт. ст. В табл. 2.2 в качестве примера приведены данные о коэффициенте абсорбции для кислорода.  [c.27]

Сварочная горелка. Основным инструментом газосварщика является сварочная горелка. Сварочной горелкой называется устройство, служащее для смешивания горючего газа или паров горючей жидкости с кислородом и получения сварочного пламени. Каждая горелка позволяет регулировать мощность, состав и форму сварочного пламени. Сварочные горелки согласно ГОСТ 1077—69 классифицируются по способу подачи горючего газа и кислорода в смесительную камеру — инжекторные и безынжекторные по роду применяемого газа по назначению — универсальные и специализированные по числу пламени — однопламенные и многопламенные по мощности — малой мощности (расход ацетилена 25—400 дм /ч), средней мощности 000—2800 дм ч), большой мощности (2800—7000 дм ч) по способу применения — ручные и машинные.  [c.97]

Перед заполнением жидкостью ячейки продувают азотом с целью удаления из них кислорода воздуха. Коррозионные растворы также вначале обескислороживают, а затем насыщают H2S и СО2 до заданной концентрации. Для контроля коррозии используют образцы из мягкой стальной ленты размерами 150x12x0,2 мм. Исходная масса образцов — до 10 г. Для получения однородной щероховатости поверхности образцы перед опытом обрабатывают карбидом кремния (SiС) в аппарате барабанного типа путем совместного перемешивания. С целью имитации турбулентного перемешивания коррозионных сред испытания осуществляют путем вращения ячеек в вертикальной плоскости со скоростью около 20 об./мин в течение 72 ч. Имитацию ламинарного движения жидкости или очень слабого ее перемешивания, характерного для застойных зон трубопроводов, проводят очень медленно вращая колеса (1-2 об./мин и менее) при угле наклона плоскости вращения 10-20°.  [c.321]

Для полного сгорания в составе смеси на один килограмм бензина должно приходиться не менее пятнадцати килограммов воздуха. Это означает, что рабочим телом в двигателях внутреннего сгорания фактически является воздух, а не пары бензина. В отличие от паровых мапхин здесь топливо сжигается для нагревания газа, а не для превращения жидкости в пар. Правда, наряду с нагреванием воздуха происходит и частичное изменение его состава вместо молекул кислорода появляется несколько большее количество молекул углекислого газа и водяного  [c.109]

Польские исследователи во главе с Вроблевским и Ольшевским [65, 66] впервые применили этилен и использовали трехкаскадную схему с конечным этиленовым испарителем при температуре около 125° К, нрн которой был сконденсирован сжатый кислород. Им удалось получить жидкий кислород и азот в 1 оличествах, достаточных для исследования свойств этих жидкостей. Дьюар [67, 68] опубликовал краткие сведения об ожижителе кислорода,  [c.39]

Содержание кислорода, необходимого для окисления органических веществ аэробными микроорганизмами, называют биохимической потребностью в кислороде (ВПК). БПК (мг/л или г/м ) характеризует степень загрязнения сточной жидкости органическими веществами. В практике ВПК определяется через 5 и 20 сут и обозначается соответственно ВПКб и ВПКго-  [c.230]

Наконец, необходимо упомянуть, что при температуре стенки трубы, превышающей температуру предельного перегрева жидкости (температура спинодали), режимы течения со сплошной пленкой пара на стенке могут существовать при наличии сплошного жидкого стержня в ядре потока. Это наблюдается, например, при подаче криожидкости (азота, кислорода, водорода, 1елия, сжиженного природного газа) в теплую трубу, находящуюся при комнатной температуре сходная картина возникает в экспериментах, моделирующих послеаварийное охлаждение твэлов ядерного реактора, когда в трубу с температурой около 1000 °С подается вода комнатной температуры (так называемое повторное смачивание — rewetting). При малых объемных паросодержаниях в этих случаях возникает стержневой, или обращенный кольцевой режим течения двухфазного потока жидкий стержень, отделенный от стенки паровой пленкой.  [c.339]


Увеличивающаяся при этих условиях скорость движения сточной жидкости в теле биофильтров обеспечивает постоянный вынос из пего задержанных трудноокисляемых нерастворенных примесей и отмирающей биопленки. Таким образом, поступающий в тело фильтра кислород воздуха расходуется в основном на биохимическое окисление не всей массы органических загрязнений, выделенных из сточной жидкости, как это происходит в обычных капельных биофильтрах, а лишь на окисление части этих загрязнений, не вынесенных из тела фильтра.  [c.361]

При этом вследствие мгновенных, быстро чередующихся процессов сжатия отдельных пузырьков здесь возникают очень большие местные импульсивные давления (в несколько сотен и даже тысяч атмосфер), приводящие к весьма коротким и интенсивным ударам, разрушающим металл, сначала выкрашивая его зерна с поверхности, а затем быстро распространяясь вглубь. К этим чисто механическим ударным действиям присоединяются часто химические воздействия на металл выделяющегося из жидкости воздуха, обогащенного кислородом, а в отдельных случаях также и электролитические воздействия. В результате всех этих явле-  [c.242]

Давлёнйя, сопровождающееся столкновением пузырьков па ра и его конденсацией. При этом вследствие мгновенных, быстро чередующихся процессов сжатия отдельных пузырьков возникают большие местные импульсные давления (в несколько сотен и даже тысяч атмосфер), приводящие к весьма коротким и интенсивным ударам разрушающим металл (сначала выкрашиваются его зерна с поверхности, затем процесс разрушения быстро распространяется вглубь). К этому чисто механическому ударному действию часто присоединяются химическое воздействие на металл выделяющегося из жидкости воздуха, обогащенного кислородом, других растворенных в ней газов, а в отдельных случаях и электролитическое воздействие. В результате всех этих явлений, особенно если кавитация длится продолжительное время, происходит эрозия металла, и он на большую глубину принимает губчатую структуру.  [c.106]

Матрица планирования и результат эксперимента указаны в табл. 2.5. Опыты проводили в автоклаве, оснащенном устройством для регулирования температуры, давления и скорости движения жидкости. Давление в автоклаве поддерживали углекислым газом на уровне О, 7 МПЭт Перед каждым экспериментом, продолжавшимся 3 часа, из сточной воды удалялся кислород свободной прокачкой угле-.кислого газа в течение 15-20 мин. В качестве образцов применяли шлифованные пластины размером 20x40x2 мм из Ст.З.  [c.17]

Значительный интерес для электротехники представляет водород. Это очень легкий газ, обладающий весьма благоприятными свойствами для использования его в качестве охлаждающей среды вместо воздуха (водород характеризуется высокой теплопроводностью и удельной теплоемкостью). При использовании водорода охлаждение вращающихся электрических машин существенно улучшается. Кроме того, при замене воздуха водородом заметно снижаются потери мощности на трение ротора машины о саз и на вентиляцию, так как эти потери приблизительно пропорциональны плотности газа. Ввиду отсутствия окисляющего действия кислорода воздуха замедляется старение органической изоляции обмоток машины и устраняется опасность пожара при коротком замьпсании внутри машины. Наконец, в атмосфере водорода улучшаются условия работы щеток. Так как водородное охлаждение позволяет повысить мощность машины и ее КПД, крупные турбогенераторы и синхронные компенсаторы выполняются с водородньпч охлаждением (еще более эффективное охлаждение достигается циркуляцией жидкости внутри полых проводников обмоток статора и даже - что, конечно, технически сложнее - ротора). Применение циркуляционного водородного охлаждения требует герметизации машины (подшипники уплотняются при помощи масляных затворов). Чтобы избежать попадания внутрь машины B03ziyxa (водород при содержании его в возд тсе от 4 до 74% по объему образует взрывчатую смесь - гремучий газ), внутри машины поддерживается некоторое избыточное давление, сверх атмосферного постепенная утечка водорода восполняется подачей газа из баллонов. При прочих равных условиях электрическая прочность водорода примерно на 40 %, а угольного ангидрида СОт - на 10% ниже, чем электрическая прочность воздуха. Для заполнения  [c.128]

Растительные масла - вязкие жидкости, получаемые из семян различных растений. Из этих масел особо важны высыхающие масла, способные под воздействием нагрева, освещения, соприкосновения с кислородом воздуха и других факторов переходить в твердое состояние. Тонкий слой масла, налитый на поверхность какого-либо материала, высыхает и образует твердую блестящую, прочно пристающую к подложке электроизоляционную пленку. Высыхание масел отнюдь не объясняется испарением части жидкости, а является сложным химическим процессом, связанным с поглощением маслом некоторого количества кислорода из воздуха. Поэтому при высыхании льняного и подобных ему масел масса масла не уменьшается, а даже несколько увеличивается. Для полного высыхания масел, например, при сушке масляных паков, необходим доспуп свежего воздуха.  [c.132]

С увеличением давления скорость коррозии стали возрастает особенно интенсивно при давлении от 2 до 3 МПа (рис. 51). При концентрации хлористых солей более 20% и до предела растворимости при повышенных давлениях наблюдается рост скорости коррозии. При повышенных давлениях кислород выступает активным деполяризатором, увеличивая скорость коррозии. Присутствие катионов, обладающих высокими деполяризующими свойствами (например, Са), значительно л-величивает скорость коррозии. Этим объясняется низкая коррозионная стойкость сталей в аэрированных высокоминерализованных буровых растворах, содержащих соль СаСЬ, добавляемую для регулирования реологических свойств промывочной жидкости, В связи с этим не рекомендуется увеличивать минерализацию буровых растворов выше 20%, особенно при наличии добавок СаСЬ.  [c.108]

Для увеличения надежности эксплуатации обсадных колонн используются буферные жидкости, которыми заполняют затрубное пространство выше цементного камня. В буферные жидкости добавляют реагенты, подавляющие жизнедеятельность СВБ и связывающие кислород. В качестве буферных - жидкостей применяют высокощелочные глинистые растворы (рН И). Для удаления кислорода в замкнутой системе применяют сульфит натрия (NajSOa), гидразин (NjH -HsO). Обескислороживание сульфитом натрия и гидразином достигается по реакциям  [c.135]


Смотреть страницы где упоминается термин Кислород жидкости : [c.161]    [c.276]    [c.144]    [c.6]    [c.48]    [c.49]    [c.226]    [c.405]    [c.179]    [c.112]    [c.256]    [c.96]    [c.150]    [c.227]    [c.200]    [c.147]    [c.107]   
Справочник по теплофизическим свойствам газов и жидкостей (1963) -- [ c.441 , c.442 ]



ПОИСК



Кислород



© 2025 Mash-xxl.info Реклама на сайте