Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия кинетическая теплового движения

Средняя кинетическая энергия Е теплового движения молекул идеального газа связана с абсолютной температурой Т газа уравнением  [c.117]

Возникновение кристаллической структуры. Твердое состояние возникает при столь сильном взаимодействии между молекулами (атомами или ионами), что тепловое движение молекул не играет роли, т.е. когда энергия связи молекул значительно больше кинетической энергии их теплового движения. Равновесное устойчивое расположение молекул друг относительно друга достигается при минимуме свободной энергии.  [c.332]


Пусть термодинамическая система массой т занимает объем У при температуре Т и давлении р (рис. 1.5). Если из внешней среды (внешнего источника теплоты) к термодинамической системе подводится бесконечно малое количество теплоты dQ, то при определенных условиях температура системы увеличится на й Т. Повышение температуры означает увеличение кинетической энергии к теплового движения системы на с Ек.  [c.14]

Квантовая теория показывает, что при весьма низких температурах, когда кинетическая энергия поступательного теплового движения частиц соизмерима с интервалами между разрешенными квантовыми уровнями Э1к 1)гни, независимое поведение частиц в совокупности становится невозможным и происходит так называемое вырождение идеального газа, когда его поведение описывается особым, квантовым уравнением состояния.  [c.364]

Вскоре после опытов Джоуля была разработана молекулярно-кинетическая теория вещества, в соответствии с которой теплота является энергией хаотического теплового движения микрочастиц, составляющих тело.  [c.27]

Когда камень упал на землю, упорядоченное движение молекул прекратилось и кинетическая энергия упорядоченного движения их полностью перешла в энергию беспорядочного теплового движения. Вообще второй закон термодинамики утверждает, что переход упорядоченного движения в неупорядоченное осуществляется полностью, а неупорядоченное движение не может полностью переходить в упорядоченное. Это положение приводит к определенной границе приложимости второго закона термодинамики.  [c.85]

Выбор макроскопической модели сплошной текучей среды с приписанными ей теми или другими свойствами отнюдь не освобождает от необходимости хотя бы беглого ознакомления с действительной молекулярной структурой жидкостей и газов и происходящими в них внутренними движениями молекул (атомов), составляющими сущность теплового движения материи. Газы, жидкости и твердые тела имеют различные микроструктуры, вследствие чего различаются между собой и тепловые движения в них. Каждое из этих трех агрегатных состояний вещества можно охарактеризовать отношением порядков величин потенциальной энергии силового взаимодействия между молекулами и кинетической энергии их теплового движения. Это отношение зависит от плотности упаковки молекул в данной структуре, т. е. от порядка средних расстояний между молекулами.  [c.12]


Сложность вопроса усугубляется, главным образом, своеобразием законов межмолекулярных сил. Для электрически нейтральных молекул силовое взаимодействие между ними определяется наличием значительного отталкивания при малых расстояниях между молекулами и быстро спадающего притяжения между ними на больших расстояниях. Сообразно этому, в сравнительно плотных молекулярных структурах, соответствующих твердому агрегатному состоянию вещества, потенциальная энергия взаимодействия молекул значительно превосходит кинетическую энергию их теплового движения.  [c.12]

Наличие такого скачкообразного изменения параметров газа — в действительности очень резкого их изменения на участке длины, равной по порядку пути свободного пробега молекулы,— показывает, что здесь имеет место внутренний молекулярный процесс, связанный с переходом кинетической энергии упорядоченного течения газа в кинетическую энергию беспорядочного теплового движения молекул. Этим объясняется разогрев газа при прохождении его из невозмущенной области перед фронтом ударной волны в область возмущенного движения за фронтом ударной волны. Повышение средней квадратичной скорости пробега молекул вызывает также возрастание давления и плотности газа при прохождении его сквозь фронт ударной волны.  [c.124]

Кинетическую энергию микроскопических тепловых движений молекул и потенциальную энергию их взаимодействия называют внутренней энергией тела.  [c.29]

Внутренняя энергия системы. Кинетическую энергию микроскопических тепловых движений молекул и потенциальную энергию их взаимодействия называют внутренней энергией тела.  [c.83]

Испарение. Испарением называют процесс перехода вещества из жидкого в парообразное состояние. При этом часть молекул вылетает с поверхности жидкости и образует над ней пар. При испа )ении вылетающие молекулы преодолевают силы притяжения оставшихся на поверхности молекул, т, е. они совершают против этих сил работу. Вся эта работа совершается молекулами за счет кинетической энергии их теплового движения. Очевидно, что не все молекулы способны совершать эту работу. Ее совершают только те, которые обладают достаточно большой кинетической энергией. ,  [c.110]

При расширении плотность газа уменьшается, кинетические процессы замедляются, и переход колебательной энергии в энергию поступательного теплового движения молекул, который необходим для последующего превращения последней в энергию направленного, гидродинамического движения, затягивается надолго.  [c.423]

Из молекулярно-кинетической теории известно, что температуру Т можно рассматривать как величину, пропорциональную средней энергии хаотического теплового движения молекул, приходящуюся на одну степень свободы молекулы. Если различные сорта элементарных частиц имеют в среднем различные энергии или если частицы одного сорта имеют различные средние энергии, приходящиеся на различные степени свободы, то при достаточно медленно протекающих процессах взаимодействие микрочастиц приводит к выравниванию средних энергий. Для резко выраженных неравновесных процессов, когда внутри макроскопически малой частицы не успевает происходить статистическое выравнивание энергии между раз-  [c.215]

Теплота является наиболее универсальной формой энергии, возникающей в результате молекулярно-кинетического (теплового) движения микрочастиц - молекул, атомов, электронов. Универсальность тепловой энергии состоит в том, что любая форма энергии (механическая, химическая, электрическая, ядерная и т.п.) трансформируется в конечном счете либо частично, либо полностью в тепло-вое движение молекул (теплоту). Различные тела могут обмениваться внутренней энергией в форме теплоты, что количественно выражается первым законом термодинамики.  [c.268]

С точки зрения молекулярно-кинетических представлений температура есть мера интенсивности теплового движения молекул. Ее численное значение связано с величиной средней кинетической энергии молекул вещества  [c.8]


Внутренняя энергия системы есть сумма всей кинетической и потенциальной энергии частиц. Жидкостям и аморфным телам свойствен лишь ближний порядок, а газы имеют беспорядочное расположение частиц при максимальной внутренней энергии системы. Состояние вещества зависит от температуры Т и значения сил межмолекулярного взаимодействия. Энергия теплового движения или так называемая энергетическая температура частиц равна кТ. При высоких температурах значение кТ превосходит энергию взаимодействия молекул и вещество может быть только газом. Напротив, в кристалле частицы связаны сильно и энергия взаимодействия много больше кТ.  [c.31]

Испарение. Неравномерное распределение кинетической энергии теплового движения молекул приводит к тому, что при любой температуре кинетическая энергия некоторых молекул жидкости или твердого тела может превышать потенциальную энергию их связи с остальными молекулами. Испарение — это процесс, при котором с поверхности жидкости или твердого тела вылетают молекулы, кинетическая энергия которых превышает потенциальную энергию взаимодействия молекул. Испарение сопровождается охлаждением жидкости.  [c.85]

Тело как система из составляющих его частиц обладает внутренней энергией. С позиций молекулярно-кинетической теории внутренняя энергия — это сумма потенциальной энергии взаимодействия частиц, составляющих тело, и кинетической энергии их беспорядочного теплового движения.  [c.94]

Е — среднее значение кинетической энергии теплового движения молекул  [c.115]

Вычислите кинетическую энергию теплового движения всех молекул воздуха в физическом кабинете. Объем кабинета —140 м , давление воздуха — 10 Па. Сколько воды можно было бы нагреть от О до 100 °С при полном использовании этой энергии  [c.118]

При какой температуре средняя кинетическая энергия теплового движения молекулы идеального газа будет равна кинетической энергии, которую приобретает копеечная монета, падающая с высоты 1м  [c.125]

Электрон может быть оторван от атома при соударении двух атомов, если их кинетическая энергия превышает энергию связи электрона. Кинетическая энергия теплового движения атомов или молекул прямо пропорциональна абсолютной температуре, поэтому с повышением температуры газа увеличивается число соударений атомов или молекул, сопровождающихся ионизацией.  [c.168]

При неупругом ударе вовсе не нарушается закон сохранения энергии, а происходит только перераспределение ее убыль кинетической энергии механического движения тел переходит в энергию возбуждения в виде вращательного или колебательного движения их составных частей или в другие формы энергии внутреннего движения. Такое внутреннее движение часто называют теплотой или тепловым движением (см. т. V).  [c.90]

Относительная роль каждого процесса определяется величиной соответствующих сечений. В некоторых веществах, для которых роль упругого рассеяния относительно высока, быстрый нейтрон теряет свою энергию в серии последовательных актов упругого соударения с ядрами вещества (замедление нейтронов). Процесс замедления продолжается до тех пор, пока кинетическая энергия нейтрона не сравняется с энергией теплового движения атомов замедляющего вещества (замедлителя). Такие нейтроны называются тепловыми. Дальнейшие столкновения тепловых нейтронов с атомами замедлителя практически не изменяют энергии нейтронов и приводят только к перемещению их в веществе (диффузия тепловых нейтронов), которое продолжается до тех пор, пока нейтрон не поглотится ядром.  [c.240]

В 34 мы видели, что при движении нейтронов в среде с малым сечением поглощения и большим сечением рассеяния происходит процесс замедления нейтронов, которые в конце концов становятся тепловыми, т. е. приходят в тепловое равновесие с атомами среды. При этом кинетическая энергия тепловых нейтронов по масштабу величины равна kT°, где k — постоянная Больцмана, а Т° — абсолютная температура. Чем выше температура среды, тем больше энергия теплового движения ее атомов и тем выше кинетическая энергия тепловых нейтронов.  [c.479]

Тепловые колебания атомов в твердых телах сводятся в основном к колебаниям с малой амплитудой, которые они совершают около средних положений равновесия. Однако кинетическая энергия атомов вследствие их взаимодействия с соседними атомами не остается постоянной. Даже в том случае, когда средняя кинетическая энергия атомов мала, согласно максвелловскому закону распределения скоростей, в кристалле всегда найдется некоторое число атомов, кинетическая энергия которых достаточно велика. Такой атом может сорваться со своего равновесного положения и, преодолев потенциальный барьер, созданный окружающими его атомами, перейти в некоторое новое свободное положение равновесия. При этом атом теряет избыточную энергию, отдавая ее атомам кристаллической решетки. Через некоторое время атом снова может набрать достаточную энергию, чтобы вырваться из нового окружения и перейти в соседнее. Такие перемещения атомов, обусловленные тепловым движением, и составляют основу диффузионных процессов в твердых телах.  [c.198]

Однако для плотной плазмы важно наличие тяжелых s-частиц (ионов, атомов), при столкновении с которыми вектор скорости электронов претерпевает хаотическое (в среднем равномерное) рассеяние. При этом становится возможным превращение кинетической энергии электронов в энергию беспорядочного теплового движения других частиц. Полная нерегулярность направлений скорости электронов достигается уже после небольщого числа столкновений. Формула для т имеет вид  [c.49]


Внутре51няя энергия идеального газа. Вычислим внутреннюю энергию идеального газа. Если потенциальная энергия взаимодействия молекул равна нулю, внутренняя энергия идеального газа равна сумме кинетических энергий хаотического теплового движения всех его молекул  [c.94]

Процесс распространения теплоты теплопроводностью является молекулярным процессом и происходит при непосредственном соприкосновении тел или частиц тел с различной температурой. В результате соударения частиц вещества (молекул, атомов и сво-бодпых электронов) происходит обмен энергией их теплового движения интенсивность движения частиц тела, обладающих меньшей внутренней кинетической энергией, увеличивается, а частиц тела, обладающих большей внутренней кинетической энергией, уменьшается.  [c.270]

Заметим теперь, что с макроскопической точки зрения полная знвргия рассматриваемой системы складывается из трех различных видов энергии потенциальной энергии, которая есть не что иное, как просто второй член в правой части выражения (12.4.14) макроскопической кинетической энергии, равной /г ри , и остальной энергии, обусловленной тепловым движением последнюю величину следует отождествить с термодинамической плотностью внутренней энергии р (х f) е (х t). Тогда плотность внутренней энергии определяется следующим образом  [c.68]

Из описанного только что процесса развития ударной волны сжатия следует, что после того, как ударная волна образовалась (в дальнейшем будет доказано, что это произойдет через конечный промежуток времени), по обе стороны от ее фронта параметры состояния газа и его скорость (абсолютная или по отношению к движущемуся фронту) будут иметь значения, различающиеся между собой на конечные величины. Фронт ударной волны представляет поверхность (в настоящем частном случае — плоскость) разрыва параметров состояния газа, перемещающуюся но газу и вызывающую скачкообразное изменение этих параметров, причем невозмущенный газ перед фронтом ударной волны имеет меньшие давления, плотность и температуру, чем после прохождения фронта. Наличие такого скачкообразного изменения параметров газа — Б действительности очень резкого их изменения на участке, и1иеющем длину порядка пути с,зободного пробега молекулы, — показывает, что здесь имеет место внутренний молекулярный процесс, связанный с переходом кинетической энергии упорядоченного течения газа в кинетическую энергию беспорядочного теплового движения молекул. Этим объясняется разогрев газа при прохождении его из невозмущен-ноп области перед фронтом ударной волны в область возмущенного движения за фронтом ударной волны. Повышение средней квадратичной скорости пробега молекул вызывает также возрастание давления и плотности иевозмущенного газа при прохождении его сквозь фронт ударной волны.  [c.150]

Энергия может переходить из одного вида в другие. Например, потенциальная энергия воды, подня1 ой плотиной на гидроэлектростанции, переходит в кинетическую энергию вращающихся турбин, которая в свою очередь превращается в электрическую энергию и по проводам передается на большие расстояния, чтобы опять перейти в кинетическую энергию станков, в тепловую энергию электропечей, в световую, в звуковую и прочие виды энергии. При всех этих явлениях исчезает (или возникает) такое же количество каждого вида энергии, сколько возникает (или исчезает) энергии всех прочих видов. Это изменение энергии, изменение формы движения, рассматриваемое с количественной стороны, Энгельс называет работой.  [c.102]

Таким образом, при свободном движении наш автомобиль рассеивает упорядоченную кинетическую энергию своего движения и превращает ее в хаотическое тепловое движение молекул. Большинство существующих в природе механических систем вед т себя так же. Если говорить обобщенно, полная механическая энергия (потенциальная -в кинетическая) в них убывает, переходя в другие формы энергии, которые в конечном итоге переходят в тепловую. Такие системы принято назвать диссипативными системами (от англ, dissipate - рассеивать). Соответственно, сам процесс рассеяния энергии называют диссипацией.  [c.101]

Первые надежные измерения этого рода, требующие измерения количества поглощенного монохроматического света (частоты V) и количества прореагировавшего вещества, были выполнены в 1916 г. Варбургом. Была изучена реакция разложения бромистого серебра AgBг под действием света. Измерения показали, что каждый квант поглощенного света разлагает одну молекулу бромистого водорода, т. е. реакция идет согласно уравнению 2НВг + 2/Iv = Н-2 + Вг. . В рамках теории фотонов понятно, что поглсщение света может быть серьезным стимулом химического превращения. Действительно, поглощение фотона молекулой сообщает ей очень большое количество энергии, эквивалентное средней кинетической энергии теплового движения при температурах в десятки тысяч градусов, согласно соотношению /гv = где к — 1,38-10" Дж/К, а Т —  [c.668]

Известно, что у легких ядер средняя энергия связи, рассчитанная на один нуклон, растет с ростом массого числа. Поэтому процесс слияния легких ядер энергетически выгоден и должен сопровождаться выделением энергии. Условием для процесса синтеза является достаточно большая кинетическая энергия взаимодействующих ядер, необходимая для успешного преодоления кулоновского барьера. Эта энергия может быть получена как анергия теплового движения при очень сильном нагревании.  [c.484]


Смотреть страницы где упоминается термин Энергия кинетическая теплового движения : [c.88]    [c.73]    [c.60]    [c.254]    [c.93]    [c.126]    [c.121]    [c.68]    [c.366]    [c.51]    [c.119]    [c.164]    [c.163]    [c.266]   
Справочник по электротехническим материалам (1959) -- [ c.0 ]



ПОИСК



Кинетическая энергия—см. Энергия

Тепловое движение

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия тепловая



© 2025 Mash-xxl.info Реклама на сайте