Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластмассы термопластичные термореактивные

Пластмассы подразделяют на термореактивные и термопластичные. Термореактивные пластмассы в процессе изготовления под действием высокой температуры становятся твердыми и неспособными плавиться при повышении температуры (текстолит, гетинакс, древесно-слоистые пластики, стеклопласты, фенопласты, волокнит).  [c.14]

Термореактивными называются пластмассы, которые при нагреве и одновременном давлении вначале размягчаются и частично плавятся, затем в результате химической реакции переходят в твердое, неплавкое и нерастворимое состояние. Эти пластмассы являются необратимыми. Пластмассы, которые при нагреве размягчаются или плавятся, а при охлаждении твердеют, называются термопластичными или обратимыми. Детали и.з термопластичных пластмасс допускают многократное использование для переработки в другие детали. Деление пластмасс на термореактивные и термопластичные см. в табл. 2U3.  [c.324]


Имеются две группы пластмасс — термореактивная и термопластичная. Термореактивные пластмассы характеризуются тем, что при нагреве до определенной температуры они переходят в твердое неплавкое состояние, и этот процесс необратим. Термопластические материалы при нагреве не затвердевают, а переходят в вязкотекучее состояние, причем процесс этот обратим. Изделия из этих материалов получают шприцеванием и литьем под давлением без дополнительной механической обработки.  [c.37]

Рис. VI 11.4. Определение минимальной толщины стенок деталей из пластмасс а — термореактивных б — термопластичных Рис. VI 11.4. Определение минимальной <a href="/info/152882">толщины стенок деталей</a> из пластмасс а — термореактивных б — термопластичных
Пластичность пластмасс высокая, поэтому их удобно перерабатывать в изделия под действием внешних усилий пластмассы могут принимать нужную форму, а после прекращения внешнего воздействия сохранять ее. Пластические свойства этих материалов проявляются по-разному. Некоторые из них (термореактивные) при затвердевании полностью теряют пластичность, их невозможно вторично размягчить путем нагревания. Есть пластмассы (термопластичные), изделия из которых можно вторично размягчить и использовать повторно.  [c.170]

Пластические массы подразделяются на термореактивные и термопластичные. Термореактивные пластмассы, кроме того, подразделяются на пластмассы холодного и горячего прессования. Эти пластмассы характеризуются переходом после прессования в неплавкое и нерастворимое состояние.  [c.51]

Пластмассы бывают термореактивные и термопластичные. Первые необратимы приобретая определенную форму при нагреве под давлением, они ее уже не изменяют. Вторые при повторном нагреве под давлением могут принимать новые формы.  [c.39]

Различают два основных вида пластмасс термопластичные и термореактивные.  [c.182]

В зависимости от пластической деформации при нагреве (уже отмечалось) различают термопластичные (термопласты) и термореактивные (реактопласты) пластмассы.  [c.345]

Клеи на основе феноло-формальдегидных смол ВИАМ-БЗ и КБ-3 широко применяют для склеивания пенопластов. Кроме того, клеем ВИАМ-БЗ склеивают изделия из слоистых и волокнистых пластмасс или пресспорошков на основе термореактивных смол. Склеивание деталей из термопластичных материалов производят клеями специального назначения. Часто склеивание осуществляют растворителем, вызывающим набухание поверхности пластмассы, что придает ей клейкость, необходимую для осуществления соединения.  [c.407]


Пластмассы — композиционные материалы, основой которых являются полимеры, определяющие главные свойства и выполняющие роль связующего, соединяющего все компоненты материала в монолит. Остальные компоненты — наполнители, пластификаторы, стабилизаторы и другие — при введении в неполярные полимеры снижают их электроизоляционные свойства. Поэтому пластмассы на основе таких полимеров — отличных диэлектриков — состоят практически только из связующего. В табл. 23.12 приведены свойства термопластичных полимерных органических диэлектриков и материалов на их основе, в табл. 23.13 — свойства термореактивных пластмасс, а в табл. 23.14 — слоистых пластиков с листовым (рулонным) наполнителем.  [c.557]

Они представляют собой гетерогенные дисперсные системы, состоящие из твердой и газообразной фаз Образование. ячеистой структуры придает им высокие теплоизоляционные свойства и чрезвычайно. малую массу. О зависимости от физической структуры газонаполненные пластмассы делят на пенопласты, поропласты и сотопласты. Полимерными связующими могут быть как термореактивные, так и термопластичные  [c.132]

Пластмассы подразделяются на термопластичные и термореактивные по реакции на теплоту. К термопластичным относятся пластмассы с линейной или разветвленной структурой полимеров, свойства которых обратимо изменяются при многократном нагревании и охлаждении. К термореактивным пластмассам относятся полимеры, в которых при термическом воздействии возникают реакции химического связывания цепных молекул друг с другом с образованием сетчатого строения. Такие пластмассы не могут переходить в пластичное состояние при повышении температуры без нарушения пространственных связей в структуре полимера.  [c.27]

Кроме связующих и наполнителей применяют пластификаторы— Л-чя улучшения технологических и эксплуатационных свойств пластмасс. Пластификаторы также увеличивают холодостойкость пластмасс и устойчивость их к воздействию ультрафиолетового излучения. В некоторых пластмассах содержание пластификатора может достигать 30—40%. На определенных стадиях переработки в пластмассы добавляют сшивающие реагенты , различные инициаторы полимеризации в сочетании с ускорителями и активаторами, красители различных классов и неорганические пигменты. В некоторые пластмассы вводятся стабилизаторы — химические соединения, способствующие длительному сохранению свойств пластмасс и повышению стойкости пластмасс к воздействию теплоты, света, кислорода воздуха. По способности к формованию полимерные материалы подразделяются на две группы термопластичные (термопласты) и термореактивные (реактопласты). При формовании изделий из термопластов химический состав полимеров не изменяется, а в реактопластах происходит изменение их структуры и состава.  [c.216]

Характер применяемой смолы и наполнителей определяет основные свойства пластмасс электроизоляционные, антифрикционные, водостойкие, фрикционные и т. п. В зависимости от типа применяемой смолы все пластмассы делятся на две группы термореактивные и термопластичные.  [c.42]

Расчет посадок с зазором состоит из трех последовательных этапов определения величины эксплуатационного зазора, определения величины сборочного зазора и выбора типа посадки сопряжений. Эта последовательность справедлива для расчета посадок с деталями из любых пластмасс (термореактивных и термопластичных). При незначительных нагрузках и скоростях, когда пластмассовые подвижные сопряжения могут эксплуатироваться без смазки, величину эксплуатационного зазора Аэз выбирают на основании эмпирических данных по аналогии с существующими конструкциями она соответствует, как правило, посадкам X, Л, Ш (в определенных классах точности).  [c.172]

Термоокислительная стабильность масел 301 Термопарные сплавы 43 Термопластичные пластмассы 151 Термостойкие лакокрасочные материалы 227 Термопреновый клей 247 Термореактивные пластмассы 151 Термостойкие шпатлевки 207 Термостойкие покрытия 227 Термостойкость бумаги 293 Термостойкость покрытий 191 Термочувствительные краски и карандаши 228  [c.346]

Рассмотрим далее свойства некоторых новых пластмасс с точки зрения достижимой точности изготовления из них деталей. К новым мы будем относить материалы, появившиеся в последние 5—6 лет. Основное внимание в эти годы было уделено разработке термопластичных материалов по сравнению с термореактивными. Это получило свое отражение и в данной статье, в которой, наряду с двумя марками реактопластов, анализируются свойства семи марок термопластов. Выбор конкретных марок пластмасс диктовался перспективностью их выпуска и комплексом свойств, определяющих их техническую ценность. Начнем с общей характеристики некоторых новых марок пластмасс.  [c.141]


В заглавиях таблиц приводятся буквы ТР (термореактивные) или ТП (термопластичные) и знак, показывающий степень важности данной пластмассы для машиностроения, выражаемый плюсами. Чем больше плюсов, тем больший интерес представляет данная пластмасса для машиностроителей.  [c.284]

Компрессионное прессование. Компрессионный метод применяется преимущественно для прессования термореактивных пластмасс. Переработка термопластичных материалов компрессионным методом в связи с развитием инжекционного метода ограничивается в основном изделиями больших габаритов и веса при малотиражном их производстве.  [c.686]

Литьевое прессование применяется как для термореактивных, так и термопластичных материалов. Развитие метода инжекционного прессования резко сократило применение литьевого метода для термопластичных материалов в технике прессования термореактивных пластмасс литьевое прессование используется для прессования изделий сложного профиля и со сложной арматурой.  [c.686]

В зависимости от связующего пластмассы разделяются на термореактивные и термопластичные.  [c.105]

Как известно, большинство пластмасс состоит из двух основных компонентов — смолы (связующего) и наполнителя. В зависимости от поведения связующего при нагреве, пластические массы разделяются на термореактивные и термопластичные. В связи с этим по свариваемости пластмассы можно разделить на две групы.  [c.175]

Таким же образом подразделяются и пластические массы, получаемые на их основе — термореактивные пластмассы, или реакто-пласты, и термопластичные пластмассы, или термопласты.  [c.342]

Наиболее эффективным и производительным способом массового производства деталей из пластмасс является литье под давлением. Область применения этого способа расширяется в связи с появлением машин для переработки не только термопластичных, но и термореактивных материалов.  [c.900]

В зависимости от состояния пластмасс в процессе нагревания их разделяют на два типа термопластичные и термореактивные.  [c.282]

Смола — связующее вещество — может быть как термореактивного, так и термопластичного типа. Она и определяет тип пластмассы и служит основным компонентом, соединяющим все остальные в однородный материал.  [c.297]

Литье под давлением термопластичных и термореактивных пластмасс.  [c.52]

Полимерные пластические материалы — искусственные материалы, получаемые на основе природных или синтетических высокомолекулярных полимеров при нагреве путем формования в размягченном состоянии под давлением и с последующим переходом в твердое состояние сформованной массы при дальнейшем ее нагревании (термореактивные) или охлаждении (термопластичные). В инженерной практике такие материалы называются пластмассами.  [c.361]

По отношению к нагреву пластмассы могут быть термореактивными (реактопласты) и термопластичными (термопласты).  [c.363]

Композиционные порошковые или гранулированные пластмассы, или прессовочные, массы состоят из связующего вещества — искусственных смол (пространственных или линейных полимеров), наполнителей (стекловолокно, асбестовое волокно, очесы хлопчатника, кварцевый песок, каолин, древесная мука-и др.), красителей, а также пластификаторов для придания изделиям из пластмассы наилучших технологических свойств. Изделия М3 термореактивных пластмасс изготовляются, как правило, методом горячего прессования, а изделия из термопластичных пластмасс — путем литья под давлением.  [c.225]

По характеру связующего вещества все пластмассы делятся на термопластичные (термопласты) и термореактивные (реактопласты). Термопластичные получены на основе термопластичных полимеров. Они хорошо перерабатываются в изделия, характеризуются значительной упругостью и малой хрупкостью. Обычно термопласты изготовляют без наполнителя. Термореактивные пластмассы изготовляются на основе термореактивных полимеров. Они отличаются хрупкостью, при переработке часто дают большую усадку, поэтому в них необходимо вводить усиливающие наполнители.  [c.236]

В зависимости от поведения высокомолекулярных соединений под действием тепла последние разделяют на термореактивные (текстолит, эбонит, бакелит и др.) и термопластичные (полистирол, полиэтилен, поливинилхлорид и т. д.). При получении термореактивных материалов происходит сшивка их молекул с образованием пространственной сетчатой структуры. Повторный Ьагрев таких материалов не меняет их свойств до тех пор, пока степень нагрева не достигнет температуры, при которой происходит разрушение пространственных связей. Такой нагрев приводит к разложению пластмассы. Обычно термореактивные пластмассы не свариваются тепловыми методами.  [c.4]

Существует значительное ко.яичество неметаллических материалов, которые успешно могут заменить металлы и их сплавы. Все более широкое применение получают различные виды полимеров (пластмасс), которые благодаря своим особым физическим и механическим свойствам позволяют использовать их для литья под давлением, прессования, формовки из листов, сварки, склеивания, наплавления и других технологических процессов изготовления деталей. Полимерные материалы (пластмассы) подразделяются на две группы термопластичные и термореактивные.  [c.188]

По природе смол пластмассы разделяют на а) термореактивные, которые в процессе изготовления под влиянием высокой температуры приобретают новые свойства — становятся неплавкими, а поэтому не допускают повторного формования, б) термопластичные, размягчаю-ш,иеся при высоких температурах и до-пускаюш.ие повторное формование.  [c.38]

Неметаллические подшинниковые материалы. Пластические массы — термореактивные типа текстолита и термопластичные, в основном полиамидные, широко используют для изготовления втулок и вкладышей подшипников их физико-механические свойства приведены в табл. 19. Коэффициент теплопроводности пластмасс в 200 раз меньше, чем коэффициент теплопроводности стали, что затрудняет теплоотвод из рабочей зоны подшипника. Для уменьшения нагрева вкладышей следует изготовлять их с малой толщиной стенок или же применять облицовку на металлической основе из тонкого слоя полиамидной смолы.  [c.423]

Природные смолы и синтетические полимеры (высокомолекулярные соединения) применяют для получения электроизоляциопных лаков, эмалей, компаундов, пластмасс, пленочных, волокнистых и других материалов. Природные смолы и синтетические полимеры бывают термопластичные (после действия нагрева не теряют способности плавиться и растворяться в подходящих растворителях) и термореактивные (после нагрева становятся неплавкими и нерастворимыми). Синтетические полимеры получаются с помощью реакций двух типов  [c.549]


Особенности технологии изготовления изделий из пластмасс в основном определяются связующим. Е5 зависимости от вида связующего различают пластмассы горячей прессовки, требующие при прессовке нагрева, и пластмассы холодной прессовки, которые прессуются при нормальной температуре. Большинство электроизоляционных пластмасс с органическим связующим требует горячего прессования, эти пластмассы разделяются на термопластичные (термопласты) и термореактивные (реактопласты) ( 6-5). Связующие термопластичных масс горячего прессования сохраняют способность к повторному размягчению и растворению в тех или иных растворителях. Связующие в термореактивных пластмассах после воздействия нагрева во время прессования (или при последующей тепловой обработке) переходят в неплавкое и нерастворимое состояние, К термопластам принадлежат пластмассы на основе поливиниловых и полиамидных смол, эфиров целлюлозы и пр., а к реакто-пластам —пласт у. ассы на основе фенолформальдегид 1Ых, карба-мидных и других термореактивных смол.  [c.149]

В качестве связующего вещества используют искусственные и природные смолы, синтетические и естественные высокомолекулярные соединения или продукты их химической переработки. По виду связующего вещества все пластмассы подразделяются на термопластичные (термообратимые) и термореактивные (термонеобратимые).  [c.493]

При решении вопроса о применении отдельных видов пластиков следует учитывать их специфические особенности. Так например, слоистые пластики (текстолит, гетинакс, дельта-древесина или лигнофоль и др.) анизотропны, т. е. имеют различные свойства в различных направлениях, зависящие главным образом от расположения слоёв и соотношения наполнителя и смолы в готовом материале. Высокое сопротивление воздшштвию вибрационных нагрузок хотя и выгодно отличает пластмассы от металлов, однако повышенная хрупкость (и не всегда достаточная прочность) прессованных деталей из порошкообразных пластмасс ограничивает их применение в силовых элементах конструкций. Термореактивные, а в особенности термопластичные материалы подвержены пластической деформации (текучести на холоду) под влиянием постоянно действующих нагрузок физико-механические свойства большинства пластиков сильно зависят от температуры и влаасности среды, в которых должен работать материал размеры деталей из пластмасс могут изменяться не только под влиянием постоянно действующих нагрузок и окружающей среды, но и в результате изменений, происходящих в процессе старения.  [c.293]

Кроме указанных двух групп, промышленностью осваивается новый вид термореактивных полимеризационных пластмасс (типа аллило-вых), которые в первой стадии переработки термопластичны, а в конечной термореактивны.  [c.677]

Материалы для прессования. Эта группа включает все пластмассы (термо-активные, термопластичные и композиции на их основе), известные под общим названием прессовочных материалов. К основным видам последних относятся а) термореактивные — прессовочные порошки разных марок (монолит, К-18-2, К-21-22, К-17-2, К-211-3, амино-пласты и др.), волокнит, пропитанные смолой слоистые прессматериалы, прессматериалы на основе минеральных наполнителей (КФ-3, К-6), меламино-формальдегидные и др. б) термопластичные— этролы, на основе простых и сложных эфиров целлюлозы, полистирол, полихлорвинил, асфальтобитумные прессовочные композиции и др. Все эти материалы могут перерабатываться как компрессионным, так и литьевым методом прессования и литьём под давлением.  [c.677]

Показана возможность исследования термопластичных и термореактивных, в том числе армированных, пластмасс п,ри удельных давлениях от 2,5 до 300 Kzj M для плоских образцов и до 8000 кг/см для шаров из пластмасс при скоростях скольжения от 0,1 до 20 м1сек. Термо-статирование узла трения — циркуляцией теплоносителя (до 200° С).  [c.88]

Антифрикционные пластмассы в узлах трения начали применять в тек-столитах термореактивных пластмассах на основе фенолформальдегнд-ных смол и хлопчатобумажных тканей. Текстолиты использованы для изготовления наборных подшипников скольжения для работы со смазыванием водой, а также для нарезания зубчатых колес и кулачковых передач. Позднее был освоен выпуск специальных антифрикционных реактопластов для подшипников, работающих без смазки. С появлением высокотехнологичных антифрикционных термопластичных полимеров антифрикционные реакто-пласты утратили ведущее положение. Однако когда к узлам предъявляют повышенные требования по жесткости, размерной стабильности и теплостойкости, пластмассы на основе термореактивных связующих применяют довольно широко, в частности в химическом и металлургическом оборудовании, водном и железнодорожном транспорте [9, 21 ].  [c.55]

Пластмассы получают на основе высокомолекулярных соединений — полимеров. Их разделяют на два класса — термопласты и реактопласты. Термопласты (термопластичные пластмассы) при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние. Реактопласты (термореактивные пластмассы) отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают свои исходные свойства. Основные методы переработки термопластов — литье под давлением, экструзия, вакуумформование, пневмоформование реактопластов — прессование н литье под давлением. Пластмассы являются весьма эффективными конструкционными материалами современной техники.  [c.139]

По Характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты), получаемые на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1—3 %). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).  [c.450]

Теперь рассмотрим обозначения TS и ТР в форме, доступной для технологов нехимического профиля. Пластмассы делятся на термореактивные смолы (TS) и термопластичные смолы (ТР). Если провести реакцию отверждения и затем нагреть термореактивную смолу, то она не будет плавиться и размягчаться. Напротив, термопластичные смолы, переведенные путем нагрева в жидкое состояние, при последующем охлаждении обратимо переходят в твердое состояние. Из термореактивных смол, используемых в качестве связующих для армированных пластмасс, применяют главным образом эпоксидные смолы и в некоторых случаях ненасыщенные полиэфирные смолы. Существует много термопластичных смол (разд. 3.1.2). В качестве матриц дляСРКМ можно использовать различные металлы, но в настоящее время чаще всего применяют алюминий и магний. Наиболее распространенный тип металлоком-позитов - материалы с алюминиевой матрицей.  [c.21]

ГазоБОЗдушные (ячеистые) пластмассы получают из термопластичных и термореактивных полимеров химическим и физическим способами. При химическом способе ячеистая газонаполненная структура образуется при термическом разложении газообразователей или взаимодействии компонентов, при физическом способе — в результате интенсивного расширения растворенных газов при снижении давления или повьппе-  [c.374]

В качестве связующего вещества используют синтетические смолы и эфиры целлюлозы. По виду связующего все пластмассы подразделяют на термопластичные (термопласты) и термореактивные (реак-топласты). Термопласты отличаются высокотехнологичностью и небольшой усадкой при формовке, обладают значительной эластичностью и не склонны к хрупкому разрушению. Реактопласты хрупкие и дают большую усадку, поэтому использование в них наполнителя обязательно.  [c.151]



Смотреть страницы где упоминается термин Пластмассы термопластичные термореактивные : [c.165]    [c.192]   
Детали машин Издание 3 (1974) -- [ c.44 , c.46 ]



ПОИСК



Основные операции штамповки деталей из термопластичных и термореактивных листовых пластмасс

Пластмасса термопластичная

Пластмасса термореактивная

Термопластичность

Физико-механические и теплофизические свойства термопластичных и термореактивных пластмасс высокой прочности (табл



© 2025 Mash-xxl.info Реклама на сайте