Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Удар электрический

Скоростная киносъемка запечатлела удар электрической искры о поверхность жидкого анода  [c.35]

Производственной травмой называют повреждение тканей и органов тела рабочего в результате неблагоприятных внешних воздействий в условиях производства. Производственные травмы бывают механические — ушибы, порезы, переломы, ранения и т. п., электрические — электрический удар, электрический ожог, и др., тепловые ожоги, химические ожоги, акустические — шумовые контузии, световые — кратковременные и длительные ослепления и т. д.  [c.14]


Удар электрическим током  [c.5]

Потрескивание в приемнике, а также удар электрического тока при касании автомобиля В этом случае может помочь замена шин или использование антистатического шнура.  [c.224]

Назначение — холодные штампы высокой устойчивости против истирания, не подвергающиеся сильным ударам, и толчкам волочильные доски, глазки для калибрования пруткового металла под накатку резьбы, гибочные и формовочные штампы, сложные секции кузовных штампов, матриц и пуансонов вырубных и просечных штампов, штамповки активной части электрических машин и т. д.  [c.386]

К первой группе относится гелий-неоновый лазер, схема которого приведена на рис. 3.6. Генерация когерентного излучения может проходить в видимой (Xj = 0,633 мкм) и в инфракрасной области (Я.2= 1,15 мкм, = 3,39 мкм). Газоразрядная трубка 1 этого лазера заполняется гелием и неоном при парциальных давлениях соответственно 133 и 13 Па. В трубке от высоковольтного источника питания 2 создается электрический разряд 3, который возбуждает атомы гелия и неона в результате электронных ударов. Излучение выходит из полупрозрачного зеркала 4. Гелий-неоновый лазер имеет сравнительно небольшую мощность, но из-за простоты устройства, надежности и стабильности излучения он получил широкое распространение.  [c.122]

Известны различные виды излучения вещества — отражение и рассеяние света, тепловое излучение, излучение заряженных частиц при их ускоренном или заторможенном движении и т. д. Однако существует излучение, отличное от этих видов как по характеру возбуждения и протекания, так и по характеристикам самого излучения (спектральному составу, поляризации и т. д.). К таким видам излучения относится свечение окисляющегося в воздухе фосфора, свечение газа при прохождении через него электрического тока, свечение тел после облучения их светом, свечение специальных экранов при ударе о них электронов (экраны телевизоров, осциллографов и др.) и т. д. Все эти виды излучения, как увидим дальше, обусловлены переходом частиц (атомов, молекул, ионов и других более сложных комплексов) из возбужденного состояния в основное и называются люминесценцией. Понятие люминесценция было введено впервые Видеманом в 1888 г. Существенный вклад в развитие учения о люминесценции был сделан советской школой физиков, во главе которой стоял акад. С. И. Вавилов.  [c.356]

Основной механизм ионизации газа при самостоятельном электрическом разряде — ионизация атомов и молекул вследствие ударов электрона.  [c.169]

Положительные ионы, возникшие в газе, движутся под действием электрического поля от анода к катоду. При ударах положительных ионов о катод и под действием света, излучаемого в процессе разряда, с катода могут освобождаться новые электроны. Эти электроны в свою очередь разгоняются электрическим полем и создают новые электронно-ионные лавины, поэтому процесс может продолжаться непрерывно.  [c.170]


Самостоятельный электрический разряд представляют собой и молнии, наблюдаемые во время грозы. Сила тока в канале молнии достигает 10 ООО—20 ООО А, длительность импульса тока составляет несколько десятков микросекунд. Самостоятельный электрический разряд между грозовым облаком и Землей после нескольких ударов молнии сам собою прекращается, так как большая часть избыточных электрических зарядов в грозовом облаке нейтрализуется электрическим током, протекающим по плазменному каналу молнии (рис. j66).  [c.170]

Электрическая дуга. Если сила тока в самостоятельном газовом разряде очень велика, то удары положительных ионов и  [c.171]

Коронный разряд. В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом и плоскостью (линия электропередачи), возникает самостоятельный разряд особого вида, называемый коронным разрядом. При коронном разряде ионизация электронным ударом происходит лишь вблизи одного из электродов, в области с высокой напряженностью электрического поля.  [c.171]

Применение электрических разрядов. Удары электронов, разгоняемых электрическим полем, приводят не только к ионизации атомов и молекул газа, но и к  [c.171]

Наоборот, такие вещества, как ртуть (потенциал возбуждения 4,9 В) или водород (потенциал возбуждения 10, 15 В), нельзя сколько-нибудь заметно возбудить в пламени горелки. В пламени, температура которого выше, можно наблюдать линии и с более высокими потенциалами возбуждения. Так, в столбе электрической дуги, горящей при достаточно высоком давлении (например при атмосферном), удары ионов и электронов, летящих под действием электрического поля, сообщают молекулам газов и паров, составляющих столб дуги, значительную кинетическую энергию, в результате чего в дуге устанавливается высокая температура (6000—7000 К), обеспечивающая в свою очередь ионизацию, достаточную для про-  [c.742]

Кавитационная коррозия металла обычно происходит в местах, где кавитационная каверна замыкается (в точке К, рис. V.16). Природа разрушения металла еще недостаточно изучена, но можно утверждать, что разрушение происходит под действием очень мощных механических ударов пузырьков пара и жидкости, химического воздействия богатого кислородом воздуха, содержащегося в воде, и, как утверждают некоторые авторы, электрических полей, возникающих в каверне.  [c.118]

Каждый цикл включает в себя примерно следующие режимы или некоторые из них а) резкий нагрев до заданной температуры б) выдержку при этой температуре в) резкое охлаждение до заданной температуры г) вибрацию и механические удары д) действие влажной атмосферы е) переход к комнатной температуре ж) выдержку при комнатной температуре з) электрические испытания (определение tg б, приложение заданного напряжения и т. п.).  [c.175]

Воздушные провода линий электропередач, подверженные действию ветра, непрерывно находятся в состоянии вибрации, вызывающей в материале проводов переменные напряжения, что приводит к их изломам. Чтобы провода не ломались, их поверхность необходимо предохранять при монтаже. Конструкция зажимов проводов должна исключать трение и удары проводов об их край, а также резкие изменения направления провода внутри и при выходе его из зажима. При помощи демпфирующих устройств вибрация проводов должна быть максимально уменьшена. Провода нужно прокладывать в местах, защищенных от ветра или влияния атмосферы. У изделий из алюминия, а также чистой меди, длительно нагруженных при обычной температуре даже ниже предела текучести, деформация увеличивается. Это явление носит название ползучести, или крипа. Механические и электрические свойства некоторых сплавов приведены в табл. 28.  [c.241]

Более высокую частоту собственных колебаний имеют пьезокерамические датчики. Например, датчик для измерения максимальных ускорений при ударах (рис. 14.13,6) имеет пьезокерамический элемент I из титаната бария, выполненный в виде шайбы диаметром 25 мм и толщиной 2,5 мм с центральным отверстием в 5 мм. При ударной нагрузке на поверхности пьезокерамики возникает электрический заряд, пропорциональный приложенному инерционному давлению. Керамика допускает нагрузку до 8000 Н/см при деформации в 0,0001%. На пьезокерамическую шайбу наложен груз 2, прижатый изолированным винтом 3. Пьезокерамические датчики имеют собственную частоту порядка 20 кГц.  [c.437]


При разработке лазерных термоядерных установок в основном предусматривается преобразование энергии синтеза сначала в теплоту, а затем в электрическую энергию. Важной задачей при создании таких установок, как и в реакторах-токамаках, является обеспечение защиты первой стенки реактора, воспринимающей мощный тепловой удар, от термоядерного микровзрыва.  [c.288]

По своим электроизоляционным параметрам провода марки ПЭТ-155 идентичны проводам ПЭТВ, однако имеют существенно лучшую нагревостойкость (температурный индекс 155) и повышенную стойкость к действию теплового удара. Электрическая прочность поли-эфиримидной изоляции в меньшей степени, чем полиэфирной, зависит от температуры. Так, если для проводов марки ПЭТВ снижение пробивного напряжения начинается после 130°С, то для полиэфир-имидной изоляции вплоть до 150 - 180°С пробивное напряжение прак-тически остается неизменным. В части механической прочности изоляции провода марки ПЭТ-155 находятся на уровне проводов марки ПЭТВ.  [c.376]

Корпус троллейбуса изолирован от земли пневматическими шинами. Вследствие этого существует опасность, что в случае повреждения изоляции проложенных в троллейбусе проводов его корпус окажется под напряжением, и пассажиры в момент, когда они, стоя на земле, возьмутся при посадке за поручни, получат удар электрическим током. Во избежание этого троллейбусы оборудуются защитными устройствами, которые отводят токи утечки через токоприемник и отрицательный контактный провод в землю (фиг. 25). Это осуществляется при помощи двух групп электролитических элементов, которые, с одной стороны, соединены с положительным или отрицательным контактным прогюдом, а с другой, через обмотки слаботочного реле — с металлическими частями кузова.  [c.932]

Люминесценция может быть возбуждена и ударами электрически заряженных частиц, как, например, альфа- и бета-частицами люминесценция, полученная таким образом, во-сит иазвание электролюминесценции.  [c.60]

Катушка полюса изготовлена из прямоугольного медного провода размерами 8x25 мм, намотанного плашмя в виде двух шайб. К первому и последнему виткам катушки приварены медные выводы, к которым болтами прикреплены гибкие соединительные шины. Конструкция и технология изготовления катушки обеспечивают плотное прилегание последнего витка, что обусловливает его надежную работу при вибрациях и ударах. Электрическая изоляция главного полюса выполнена из материалов класса Р.  [c.203]

Титан стоек в азотной кислоте любых концентраций при температурах вплоть до температуры кипения и достаточно высоких давлениях. Скорость коррозии титана в растворах азотной кислоты с течением времени резко снижается вследствие образования пленки ТЮг, обладающей защитными свойствами. Скорость кор))озии титана и его сплавов в дымящей азотной кислоте обычно не превышает 0,1 лш/гоб. Однако в литературе отмечаются случаи взрывов при нспытапин титана в дымящей азотной кислоте, которым предшествовала скорость коррозии от 10 до 100 мм1 год. Продукты, образовавшиеся в результате этого вида межкристаллитной коррозии, представляют собой частицы титана с сильно развитой активной поверхностью и обладают пирофорными свойствами они чувствительны к нагреву, удару и электрической искре.  [c.281]

Распределение потока массы. В связи с выявлением факта, что при движении по трубе твердые частицы приобретают электрический заряд вследствие соударений со стенками [357], была исследована возможность измерения локальных массовых потоков. Поскольку твердые частицы заряжаются при ударе о стенку, величина их заряда почти не зависит от их размеров, а знак заряда одинаков и определяется законами трпбоэ.лектрических явлений [849]. В результате зонд с заданным поперечным сечением будет приобретать заряд со скоростью, пропорциональной массовому потоку частиц. Бы.л изготовлен сферический зонд для измерения распределения массового потока (фиг. 4.21). Для поддержания большого сопротивления зонда по отношению к зе.мле его провод был изолирован от трубки, изготовленной из дюдицинской иглы и служащей державкой, стеклянным изолирующшм чехлом. Чтобы  [c.184]

Большие во зможпости при испытаниях на термостойкость обеспечивает применение плазменно-дуговой горелки. Такая горелка представляет собой устройство, позволяющее нагревать газ до исключительно высокой температуры. Достигаемая температура газа не ограничена какой-либо скрытой теплотой реакций, поскольку горения не происходит. При непрерывном увеличении электрической. мощности плазменные горелки могут развивать температуру свыше 15 000°С. Для испытаний покрытий на тепловой удар чаще всего применяется плазменная горелка мощностью 40—60 кВт, состоящая из конического водоохлаждаемого медного анода и устройства для тангенциальной подачи азота (рис. 7-13), Азот по-  [c.179]

В телевизионном приемнике— телевизоре — имеется электровакуумная трубка, называемая ки нескопом. В кинескопе электронная пушка создает электронный луч. Электроны под действием электрического поля движутся внутри трубки к экрану, покрытому кристаллами, способными светиться под ударами быстро-движущихся электроЕюв. На пути к экралу электроны пролетают через магнитные поля двух пар катушек, расположенных снаружи трубки.  [c.257]

Прохождение ионизирующей частицы через счетчик сопровождается ионизацией атомов газа, наполняющего цилиндр счетчика. Возникающие положительные ионы устремляются под действием приложенного электрического поля к стенкам цилиндра, а электроны — к нити. В области сильного поля вблизи нити электроны преобретают такую энергию, что своими ударами ионизируют новые атомы газа. Число ионов нарастает лавинообразно, в газе счетчика вспыхивает электрический разряд, а в цепи — импульс тока.  [c.41]

Механические свойства твердого тела отражают его реакцию на воздействие некоторых внешних факторов. В простейшем случае такими внешними факторами являются механические воздействия сжатие, растяжение, изгиб, удар, кручение. Кроме механиче-v KHx существуют тепловые, магнитные, электрические и другие воздействия.  [c.114]


Такое рассмотрение применимо также и в слу 1аях, когда непосредственного соударения не происходит, но когда силы взаимодействия между телами достаточно резко убывают при увеличении расстояния между ними и весь процесс соударения , т. е. взаимодействия между телами, происходит в очень малой области пространства. Тогда определение движения тел, после того как они вышли из этой малой области, можно рассматривать как задачу об ударе. Таким методом можно решать, например, задачи о стол1аювении микрочастиц, обладающих электрическими зарядами.  [c.145]

В плазме излучающий атом находится под воздействием быстропеременных полей соседних заряженных частиц. В первом приближении электрическое поле ионов можно считать квазиста-тическим, приводящим к обычному расщеплению линии. Воздействие электронов на атом, наоборот, можно считать резким ударом, обрывающим цуг колебаний излучаемой волны или, если  [c.268]

Эти особенности плазмы определяются в основном дальнодей-ствующим характером электрических сил взаимодействия между составляющими ее частицами. Действительно, в то время как в обычном газе потенциал Ф межмолекулярных сил быстро спадает с расстоянием г (в случае ван-дер-ваальсовых сил притяжения Ф 1/г ) и движущиеся частицы заметно взаимодействуют только во время ударов, потенциал взаимодействия между частицами плазмы изменяется по закону Кулона обратно пропорционально первой степени расстояния Фе 1/г, что приводит к взаимодействию частиц и на больших расстояниях (и поэтому к длительному взаимодействию).  [c.215]

Рентгеновское излучение. Рентгеновское излучение возникает при бомбардировке анода быстрыми электронами (рис. 25), ускоренными большой разностью потенциалов. Раскаленная металлическая нить Н испускает электроны (электроны термоэмиссии), которые, пройдя через сетку-катод С, попадают в ускоряющее электрическое поле между катодом С и анодом А. Из анода в результате удара в него электронов испускается рентгеновское излучение. Все это происходит в объеме с высоким вакуумом, показанном штриховой линией. В обычных условиях используются разности потенциалов порядка 100 кэВ. Однако имеются установки с использованием электронов с энергией в миллион электрон-вольт. Оно генерируется также в виде тормозного излучения в бетатронах и синхротронах (синхро-тронное излучение). Рентгеновское излучение является электромагнитным, длина волн которого заключена примерно между 10 и 0,001 нм. Однако такой взгляд на природу рентгеновского излучения возник не сразу. Рентген предполагал (1895), что открытые им лучи являются продольными световыми волнами, хотя и не настаивал на этом представлении. В принципе правильные представления на природу рентгеновских лучей высказал Стокс (1897). Он считал, что это электромагнитное излучение, которое возникает в результате торможения электрона при ударе о катод. Тормозящийся электрон эквивалентен переменному току, который, как это было уже известно из опытов Герца, генерирует электромагнитные волны.  [c.48]

Помимо измерения кинематических параметров, к настоящему времени отработана манганиновая методика непосредственного измерения давления в конденсированных телах, сжатых сильными ударными волнами, основанная на иснользованпн манганиновых датчиков, в которых чувствительный элемент из особого манганпнового сплава меняет электрическое сопротивление R под действием давления. Датчик с изоляцией помещается внутри исследуемого образца, и при ударе измеряется изменение электрического тока I t) в датчике при фиксированном папряженип F, что позволяет определить R t). а затем, зная зависимость R p), можно восстановить и p t). Этот метод хорошо работает в металлах до давления 15 ГПа, а при давлениях выше 35 ГПа становится непригодным из-за разрушения изоляции датчика. Ниже  [c.247]

THERNL - нелинейный температурный анализ стационарных и переходных режимов расчет задач электропроводности, конвекции, излучения. Исследования электрических и тепловых явлений, связанных с ударом молнии или искровым разрядом  [c.55]

В твердых диэлектриках повышенная температура вызывает соответствующие изменения электрических параметров и снижение ряда механических. Кроме того, повышенная температура размягчает большинство твердых диэлектриков и даже может их расплавить. Низкая температура плавления некоторых материалов лимитирует даже область их применения, например у стандартного парафина разных марок температура плавления лежит в пределах 49—54° С. Органические и элементоорганические соединения при воздействии высокой температуры подвергаются термоокислительной деструкции, которая приводит к необратимому изменению их свойств и тепловому старению. К числу тепловых воздействий относится и терм о-удар — резкое изменение температуры. Многие твердые диэлектрики плохо переносят резкие температурные колебания, которые вызывают растрескивание. Очень низкие температуры не орасны с точки зрения непосредственного воздействия на электрические параметры, но ведут к появлению трещин и могут вызывать хрупкость твердой изоляции, которая по условиям использования должна оставаться гибкой. Например, применяемая для многих марок проводов резиновая изоляция в области достаточно низких температур становится хрупкой, ломкой. Жидкие диэлектрики при понижении температуры повышают свою вязкость, а при достаточно низких температурах совсем застывают и теряют текучесть.  [c.108]

Производство большинства угольных изделий заключается в измельчении углеродистого сырья, смешении его со связками (каменноугольные пеки и смолы), формовании и обжиге, после которого изделие приобретает достаточно механическую прочность и твердость. В угольную массу часто вводят разные добавки, например в щетки для электрических машин с целью повышения проводимости — медный или бронзовый порошок, в осветительные угли — разные соли, придающие определенную окраску электрической дуге, создаваемой с помощью этих углей. Введение кокса повышает механическую прочность изделий, делает их более устойчивыми к удару. При производстве угольных щеток часто прибегают к процессу графитирования, заключающемуся в термообработке, увеличивающей размеры кристаллов, что повышает проводимость и снижает твердость. Обожженные щетки омедняют с по-  [c.264]

Наконец, стример достигает катода, и электропроводящий плазменный канал замыкает разрядный промежуток. В результате ударов положительных ионов на поверхности катода образуется катодное пйтно, излучающее электроны, которые со скоростью 10 м/с распространяются по электропроводящему плазменному каналу к аноду. Этот процесс наблюдается в разрядном промежутке как искра (искровой разряд). Пробивным напряжением газа является напряжение, при котором происходит искровой разряд. Если мощность источника напряжения достаточна для поддержания испарения металла катода и мощного дугового разряда, то между электродами загорается электрическая дуга (дуговой разряд).  [c.173]

Изоляционные пленки на основе полиэфиров достаточно стойки к действию растворителей, выдерживают испытание на термопластичность при 200 °С, отличаются повышенной электрической прочностью, но механические характеристики их ниже, чем у поливинил-ацеталевых пленок. Основным недостатком этих проводов является низкая стойкость к тепловому удару, т. е. кратковременному воздействию высоких температур, что обусловлено химической природой полимера. В связи с этим провода марки ПЭТВ не рекомендуется использовать в электрооборудовании, режим работы которого предполагает наличие токовых перегрузок.  [c.250]



Смотреть страницы где упоминается термин Удар электрический : [c.189]    [c.316]    [c.142]    [c.221]    [c.840]    [c.452]    [c.374]    [c.109]    [c.80]    [c.247]    [c.175]   
Ручная дуговая сварка (1990) -- [ c.309 ]



ПОИСК



Электрические машины с поступательными ударами



© 2025 Mash-xxl.info Реклама на сайте