Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучения поток и гидродинамика

Оптические приборы и оптические методы исследования широко применяются в самых разнообразных областях естествознания и техники. Напомним, например, об изучении структуры молекул с помощью их спектров излучения, поглощения и рассеяния света, а также о применении микроскопа в биологии, об использовании спектрального анализа в металлургии и геологии. Оптические квантовые генераторы неизмеримо расширяют возможности оптических методов исследования. Приведем несколько примеров, иллюстрирующих положение дела. Один из новых методов — голография — подробно описан в главе XI. Изучение атомно-молекулярных процессов, протекающих в излучающей среде лазеров, а также рассеяния света и фотолюминесценции с применением лазеров позволило получить большой объем сведений в атомной и молекулярной физике, равно как и в физике твердого тела. Оптические квантовые генераторы заметно изменили облик фотохимии с помощью мощного лазерного излучения могут производиться разделение изотопов и осуществляться направленные химические реакции. Благодаря монохроматичности излучения оптических квантовых генераторов оказывается сравнительно простыми измерения сдвига частоты, возникающего при рассеянии света вследствие эффекта Допплера этот метод широко используется в аэро- и гидродинамике для излучения поля скоростей в потоках газов и жидкостей.  [c.770]


МОДЕЛИРОВАНИЕ ЗВЁЗД — методы нахождения распределений физ. характеристик звёздного вещества (давления, плотности, темп-ры, массы, хим. состава) от центра до поверхности звезды и изменений этих характеристик со временем. Построение моделей даёт возможность установить связь между оси. параметрами звёзд (массой, хим. составом, возрастом) и главными наблюдаемыми характеристиками — светимостью (интегральным потоком излучения), эффективной температурой и ускорением силы тяжести на поверхности. Прослеживая изменения моделируемых параметров звёзд со временем, удаётся описать переменность звёзд и их эволюцию. М. 3. основывается на законах гидродинамики, теории переноса излучения, ядерной физике, статистической физике и др. Одним из основных методов исследования является численное моделирование.  [c.174]

Для более точного решения задач магнитной гидродинамики с учетом излучения необходимо дополнить изложенную выше методику соотношениями для вычисления локальной дивергенции лучистого потока. Особый интерес может представить выяснение влияния радиационного теплообмена на конвективный.  [c.235]

Анализ лучистой составляющей теплового переноса, очевидно, следует вести как по пути исследования влияния излучения на тепловой поток, так и косвенно, путем учета влияния излучения на перестройку температурного поля пограничного слоя. Последнее существенным образом взаимосвязано с гидродинамикой пограничного слоя.  [c.132]

Лучистый теплообмен разыгрывается на расстояниях, измеряемых длинами пробега излучения, которые обычно гораздо больше характерных длин для газовых процессов. Поэтому при рассмотрении структуры фронта можно исходить из уравнений гидродинамики идеальной жидкости, а скачок уплотнения рассматривать как математический разрыв, так же как и при изучении релаксационных процессов. Релаксацией для простоты также можно пренебречь и считать, что газ имеет постоянный показатель адиабаты. В этих предположениях уравнения гидродинамики для стационарного одномерного течения в волне в точности аналогичны уравнениям (1.15)—(1.18), с той лишь разницей, что в уравнении энергии добавляется член потока энергии излучения S и уравнение принимает форму  [c.220]

Решение системы уравнений гидродинамики и переноса излучения приводит к картине, которую лучше всего пояснить при помош и распределений температуры во фронте ударной волны, показанных на рис. 5, а и 5, б. Первый случай (рис. 5, а) соответствует ударной волне не очень большой амплитуды. Поток излучения, равный примерно где Т температура за фронтом, выходит с поверхности скачка и, погло-ш аясь в холодном газе перед фронтом, нагревает его. Температура газа, естественно, повышается по мере приближения к скачку. За скачком нагретый газ несколько охлаждается за счет потери энергии на излучение, и потому температура за скачком падает, приближаясь к равновесной.  [c.220]


Для определения потока излучения к уравнениям гидродинамики  [c.411]

Современная вычислительная гидродинамика занимается разработкой таких актуальных направлений, как расчет движений вязкой жидкости, численное исследование течений газа с физикохимическими превращениями, изучение распространения ударных волн в различных средах, решение газодинамических задач при наличии излучения и т. д. Данная книга ограничена обсуждением лишь одной из этих проблем — численным расчетом течений вязкой жидкости, описываемых уравнениями Павье—Стокса. Эти уравнения необходимо рассматривать в целом ряде практически интересных случаев (отрыв потока, кормовой след, взаимодействие вязкого газа с ударной волной), которые не охватываются концепцией пограничного слоя.  [c.8]

Второй период охватывает время от конца 17-го до 20-х годов нашего века. И. Ньютон создает основу механики. Р. Гук (Англия) на опыте устанавливает пропорциональность мевду напряжениями и деф01ялациями в твердых телах - основной закон теории упругости. Х.Гюйгенс (Голландия) формулирует важный принцип - так называемый принцип Гюйгенса в волновом движении. С этого времени начи-назтся расцвет классической физики. Механика, гидродинамика и теория упругости, математическая физика, теория колебаний и волн, акустика и оптика развиваются в тесной взаимосвязи. В этот период акустика развивается как раздел механики. Создается общая теория механических колебаний, теория излучения и распространения упругих (звуковых) волн в различных средах, разрабатываются методы измерения характеристик звука (скорости звука, звукового давления в среде, импульса, энергии и потока знергии звуковых волн). Диапазон частот звуковых волн рася иряется и охватывает как область инфразвука, так и ультразвука (свыше 20 кГц).Выяо-  [c.5]

В настоящей книге представлены результаты исследований автомодельных решений уравнений газовой динамики, рассматриваемых только в однотемпературном приближении. В последние годы при участии авторов проведен анализ большого числа автомодельных задач с учетом в среде поглощения лазерного излучения, электронно-ионной релаксации, приводящей к неравенству электронной и ионной температуры, а также с учетом неравенства трех компонент температуры — электронной, ионной и фотонной. Использование автомодельных и численных решений системы уравнений двухтемпературной и трехтемпературной газодинамики позволило установить ряд новых свойств газодинамических и температурных волн (см. [11,12,17,32—35]). В работах [27, 57, 58] с помощью автомодельных решений исследовалось движение газа и перенос тепла с учетом релаксации теплового потока. В работах [14, 26, 30, 31] проведен анализ широкого класса автомодельных решений уравнений газовой динамики и магнитной гидродинамики с учетом влияния на движение нелинейных объемных источников и стоков массы, импульса и энергии. Исследовались автомодельные решения уравнений двухтемпературной газодинамики с учетом  [c.227]

В камере реактора с сухой стенкой гидродинамика воздействия рентгеновского излучения и потока ионов принципиально иная. Заполняющий камеру буферный газ существенно поглощает эти потоки энергии, и поверхность камеры подвергается радиационному нагреву за счет вторичного переизлучения плазмы. Радиационный тепловой поток отводится посредством теплопроводности через первую стенку камеры к теплоносителю. Характерные значения тепловых потоков на стенке представлены в расчетах по проекту SOMBRERO первая стенка должна воспринимать тепловые потоки до 3,5- 10 Вт-м в течение 10 " с. Нагрев стенки определяется её теплопроводностью.  [c.87]


Смотреть страницы где упоминается термин Излучения поток и гидродинамика : [c.62]    [c.66]    [c.12]   
Физическая теория газовой динамики (1968) -- [ c.443 ]



ПОИСК



Гидродинамика

Поток излучения



© 2025 Mash-xxl.info Реклама на сайте