Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон инерции Галилея—Ньютона

Утверждение, что инерциальные системы отсчета существуют, составляет содержание первого закона механики — закона инерции Галилея — Ньютона.  [c.35]

Признается справедливость закона инерции Галилея — Ньютона, согласно которому тело, не подверженное действию со стороны других тел, движется прямолинейно и равномерно. Этот закон утверждает существование инерциальных систем отсчета, в которых выполня- ются законы Ньютона (а также принцип относительности Галилея). Рис. 6.1  [c.173]


Основными понятиями классической механики являются понятия о пространстве и времени, о силе и массе, об инерциальной системе отсчета. Основными законами являются закон инерции Галилея — Ньютона (первый закон Ньютона), уравнение движения относительно инерциальной системы отсчета (второй закон Ньютона), закон равенства действия и противодействия (третий закон Ньютона). Эти понятия и законы были сформулированы И. Ньютоном в его гениальном трактате Математические начала натуральной философии (1687).  [c.7]

Закон инерции Галилея—Ньютона 36 Закон Кулона 30  [c.568]

Не останавливаясь пока на разъяснении употребленного выше понятия силы, отметим, что этой аксиомой утверждается равноправие состояний покоя и равномерного прямолинейного движения которые рассматриваются как естественные состояния тела. Закон постулирует способность тел пребывать в этих естественных состояниях. Эту способность называют также инертностью или инерцией тела. Первую аксиому Ньютона называют иногда законом инерции Галилея . При этом нужно заметить, что хотя Галилей и пришел к этому закону раньше Ньютона, но сформулировал его только как следствие из проведенных им опытов по падению тел по наклонной плоскости для предельного случая исчезающего наклона (т. е. горизонтальной плоскости), тогда как Ньютон поставил этот закон во главу всей своей системы. Вместо ньютоновского термина тело мы в дальнейшем будем пользоваться термином точечное тело или материальная точка .  [c.12]

Первый закон Ньютона —это закон инерции Галилея отсюда возник термин инерциальные системы .  [c.11]

Декарт ссылается и на то, что камень, выпущенный из раскрученной пращи, летит по касательной к окружности, которую он описывал вместе с пращей. Двойственность в формулировке закона инерции Галилея была устранена тогда, когда был решен вопрос о центробежной силе (Гюйгенс, Ньютон).  [c.95]

Основная задача динамики — раскрыть закономерность связи между силами и движением — была решена в полной мере впервые Ньютоном на основании упомянутого в 12 закона инерции Галилея. Этот закон называется первым законом Ньютона и формулируется так всякое тело пребывает в состоянии покоя или равномерного и прямолинейного движения, пока приложенные силы не вызовут изменения этого состояния.  [c.59]

Закон инерции Галилея является обобщением опытных фактов, накопленных человечеством. Опираясь на него, Ньютон сформулировал свои основные законы движения.  [c.210]


Можно заметить, что второй закон Ньютона содержит в себе и закон инерции Галилея. В самом деле, если положить F=0, то  [c.211]

В различных системах отсчета математическая форма законов природы различна, однако существуют такие, так называемые инерциальные системы отсчета, в которых эти законы имеют наиболее простой вид. Такими инерциальными системами называются системы отсчета, в которых материальная точка при отсутствии действующих на нее сил взаимодействия (по третьему закону Ньютона) движется равномерно и прямолинейно, т. е. системы, для которых справедлив закон инерции Галилея (силы можно считать отсутствующими в том случае, когда все тела, от которых эти силы могут исходить, достаточно удалены, так что можно пренебрегать их влиянием). С достаточной точностью такой инерциальной системой можно считать гелиоцентрическую систему координат. В первом приближении (для малых движений) система отсчета, связанная с Землей, так же может рассматриваться как инерциальная система координат.  [c.211]

Р1з сказанного следует, что закон инерции Галилея является первым фундаментальным философско-физическим постулатом классической механики и не является простым следствием второго закона Ньютона.  [c.86]

Первый закон классической механики, или з а -кон инерции Галилея — Ньютона, сводится к утверждению, что инерциальные системы отсчета суи ествуют, т. е. существуют системы, удовлетворяющие требованию (1.55) . Конечно, возникает вопрос с чем связано существование такой привилегированной системы отсчета, как инерциальная система Однако этот вопрос до сих пор не может считаться решенным.  [c.36]

Частный случай закона движения Ньютона приводит к закону инерции Галилея всякое тело, без влияния на него внешних сил, остается в покое или перемещается прямолинейно и равномерно.  [c.229]

Эту аксиому часто называют первым законом Ньютон а, или принципом инерции Галилея.  [c.144]

Эту аксиому часто называют первым законом Ньютона, или принципом инерции Галилея. Она достаточно подробно изучается в элементарном курсе физики, поэтому здесь ограничимся лишь несколькими замечаниями.  [c.137]

Закон инерции не в столь широкой обобщенной форме, как это сделал Ньютон, был установлен ранее Галилеем (1564— 1642) ) для частного случая движения тела по гладкой горизонтальной плоскости. Приведем эту формулировку Когда тело движется по горизонтальной плоскости, не встречая никакого сопротивления, то движение его является равномерным и продолжалось бы бесконечно, если бы плоскость простиралась в пространстве без конца .  [c.12]

Однако у Галилея встречаются разные и не равносильные формулировки принципа инерции. В Беседах они больше соответствуют позднейшим формулировкам Декарта и Ньютона, и там, в частности, подчеркивается, что 94 степень скорости, обнаруживаемая телом, ненарушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними Однако в Диалоге о двух главных системах мира (1632 г.) после разъяснения выводов, вытекающих из рассмотрения наклонных плоскостей с приближающимися к нулю углами наклона, следует заявление Но движение по горизонтальной линии, у которой нет ни наклона, ни подъема, есть круговое движение вокруг центра . Так, закон инерции, который можно было бы назвать законом прямолинейной инерции, превращается у Галилея, в порядке уточнения, в закон, так сказать, круговой инерции.  [c.94]

Количественных оценок у Галилея мы не находим. Характеризуя взгляда Галилея, Эйнштейн писал Он нашел закон инерции и закон свободного падения в поле тяготения Земли масса (точнее, материальная точка), на которую не действуют другие массы, движется равномерно и прямолинейно. Вертикальная скорость свободно падающего тела возрастает в поле тяжести пропорционально времени. Сегодня нам может казаться, что только небольшой шаг отделяет результаты Галилея от законов Ньютона. Но все-таки следует отметить, что оба вышеприведенных утверждения Галилея яо форме относятся к движению в целом... . Только дифференциальная форма закона позволила объяснить явления, связанные с тяготением.  [c.360]


Движение по инерции — свойство всех материальных тел, — еще так можно формулировать закон Галилея — Ньютона. Инерция тела — не причина его движения, а его свойство.  [c.60]

Таким образом, гравитационный парадокс демонстрирует не условия ограничения закона Ньютона (которые имеются объективно), а разные правила построения моделей, имеющих различные свойства и, как следствие, неодинаковость гравитационной силы. С равным успехом можно считать парадоксальными неодинаковые значения кинетической энергии, импульса, кинетического момента, действия при наблюдении тела в разных инерциальных системах координат, имеющих разные скорости, а затем делать выводы о непригодности принципа инерции Галилея. Конечно, аналогия не полная. Вместо принципа Галилея более подходящими для сравнения являются условия гидродинамического принципа Даламбера движения относительно идеальной среды (с инерционной массой).  [c.247]

Закон инерции еще до Ньютона был сформулирован Галилеем, а затем Декартом. Известно, какую борьбу пришлось вести Галилею со средневековой схоластикой, с последователями Аристотеля, которого католическая церковь считала непререкаемым авторитетом во всех научных вопросах. По Аристотелю для поддержания прямолинейного равномерного движения нужна затрата силы хорошо известно, однако, что шар, пришедший в движение благодаря толчку, продолжает двигаться — Аристотель объяснял это следующим образом за движущимся шаром образуется пустота — а так как природа боится пустоты , то в эту пустоту за шаром устремляется воздух, который и заставляет шар двигаться вперед  [c.14]

Диференциальные уравнения движения точки. В основе классической динамики лежат следующие законы— аксиомы движения —Галилея—Ньютона 1) закон инерции  [c.375]

Гюйгенс был прямым продолжателем работ Галилея и Торричелли, теории которых он, по его собственному выражению, подтверждал и обобщал [54, с. 91]. Аксиомы (закон инерции независимость вертикального движения, вызванного весом, и произвольного равномерного движения, составляющих сложное, то есть реальное движение) и первые одиннадцать теорем ( предложений ) второй части Маятниковых часов обобщают результаты Галилея в задаче о колебаниях маятника (считается, что колебания происходят в вертикальной плоскости, под действием тяжести, по траектории, являющейся предельным положением ломаной). Следующий шаг в обобщении идей Галилея-Гюйгенса сделал Ньютон, предложив систему понятий и законы , ставшие основой теоретической механики. Остановимся на некоторых из теорем Гюйгенса.  [c.80]

Механика опирается на небольшое число основных законов, которые невозможно вывести непосредственно и к которым пришли длинным путем индукций. Полученные из них следствия подтверждаются наблюдениями. Первая идея этих законов принадлежит Галилею, который при исследовании законов падения тел (наклонная плоскость, маятник, параболическое движение) ввел понятия инерции, ускорения, сложения движений. Гюйгенс был продолжателем Галилея в теории движения точки. Он же первый изучал движение материальной системы. Наконец, Ньютон расширил область механики открытием закона всемирного тяготения.  [c.86]

В качестве первого закона Ньютон принял принцип инерции, открытый Галилеем, который можно сформулировать следующим образом изолированная материальная точка находится в состоянии покоя или равномерного и прямолинейного движения.  [c.10]

Эта теория принимает без изменения такие положения ньютоновской механики, как евклидовость пространства и закон инерции Галилея — Ньютона. Что же касается утверждения о неизменности размеров твердых тел и промежутков времени в разных системах отсчета, то Эйнштейн обратил внимание на то, что эти представления возникли в результате изучения движений тел с малыми скоростями, поэтому их экстраполяция в область больших скоростей ничем не оправдана, а следовательно незаконна. Только опыт может дать ответ на вопрос, каковы их истинные свойства. Это же относится к преобразованиям Галилея и к принципу дальнодействия.  [c.177]

Сначала напомним определение инерциальной системы отсчета и формулировку принципа относительности. Под системой отсчета -5 можно понимать платформу, снабженную линейкой и часами. С ее лсшощью можно определять положение тел и гп2 и течение времени. Эта платформа сама может перемещаться по прямой, на которой постоянно расположены соударяющиеся тела и Шг-Принцип относительности постулирует существование инерциаль-ны.х систем отсчета, в которых все законы механики (в том числе и законы удара) имеют одинаковый вид. В частности, любое тело, не взаимодействующее с другими телами, движется относительно любой инерциальной системы отсчета равномерно и прямолинейно (закон инерции Галилея — Ньютона). Приведенная выше формулировка принципа относительности является очень общей она справедлива и в релятивистской механике. Специфика ньютоновской механики проявляется в определении связи между различными нерциальными системами отсчета.  [c.7]

В процессе развития понятия записи в словаре могут уточняться, таблица может расширяться за счёт столбцов, где указывалась бы система, в которой используется модель материальной точки, а также решаемая задача (проводимое исследование). Даже условие изолированности материальной точки в законе инерции Галилея (первый закон Ньютона) предполагает упоминание об инерциальной системе отсчёта, что указывает на возможность пополнения словаря информацией о новых физических явлениях, соответствующих математиче-  [c.17]

Три закона движения. В основе всей в основе динамики лежат механики, В частности динамики, лежат три закона Ньютона 1) прин- три закона, ягзътаеыые. основными законна инерции, 2) основной, ами Галилея —Ньютона и сформулиро-закои динамики, 3) принцип л  [c.247]


Герц приходит к выводу, что при помощи классической механики Галилея—Ньютона невозможно дать удовлетворительное объяснение силе и массе. Действительно, если механическая система полностью изолирована, не подвержена никаким внешним воздействиям, то центр ее масс будет двигаться по инерции, т. е. равномерно и прямо-лине11но. Отсюда, казалось бы, несложно определить массу, ведь положение центра масс будет зависеть от ее значений. Но реально систем, совершенно не подверженных внешним воздействиям, не суш ествует все части Вселенной испытывают более или менее сильное влияние всех остальных ее частей. Вывод отсюда один — закон инерции строго справедлив только в случае его приложения ко Вселенной в целом. Но тогда для определения величины масс следовало бы наблюдать за движением центра Вселенной, которое для нас, как говорит Герц, останется навеки неизвестным.  [c.28]

Современное понятие силы, действующей на материальную точку, было дано еще Галилеем, сформулировавшим свой знаменитый закон инерции, из которого следует, что действующая на материальную точку сила изменяет ее состояние покоя или равномерного прямолинейного движения, т. е. сообщает точке ускорение. Определенные так силы Ньютон назвал ускоряющими. Направление силы, действующей на точку, определяется направленпем вектора ускорения точки, которое последняя приобретает под действием силы.  [c.116]

В формулировке 2-го тина речь идет не об изолированном теле, а о теле, взаимодействующем с другими телами и, следовательно, основная идея Галилея, о которой говорилось выше, растворена соображениями об изменчивости количества движения точки. Иначе говоря, основная идея Галилея, закона инерции, донолнена элементами, относящимися к сфере действия второго закона Ньютона. Именно об этом говорит фраза ...если только приложенная к нему сила не побуждает его изменить свое состояние . О возможных иоследствиях взаимодействия тела с окружающей средой говорится неонределенно когда взаимодействие приводит к изменению количества движения, а когда нет На эти вопросы отвечает, и вполне определенно, только второй закон механики. Но это, конечно, создает впечатление, будто закон инерции содержится во втором законе Ньютона.  [c.85]

Почти во всех учебниках встречается утверждение, что первый закон Ньютона — закон инерций — был высказан уже Галилеем. Однако вни-дмательное чтение произведений Галилея этого не подтверждает более того, даже неизвестно, каким образом могло возникнуть такое представление. Так как Галилея, как механика, поднял на щит знаменитый Мах, то автор этих строк долгое время думал, что это представление принадлежит Маху однако последний в своей книге Механика в своем развитии (гл. II, 1, 8 стр. 140 немецкого издания 1901 г.) цитирует работу Вольвиля (1884 г.), показавшего, что предшественники Галилея и даже сам Галилей, лишь очень постепенно освобождаясь от аристотелевых представлений, дошли до понимания закона инерции . В своем пути Галилей остановился на стадии введенного Коперником принципа космической инерции, иными словами равномерного кругового движения тел, находящихся на поверхности Земли в своем естественном месте. Широко известна написанная Галилеем художественная картина поведения брошенных шаров, текущей воды, летающих бабочек и т. д. в каюте равномерно движущегося по спокойному морю корабля, но мало кто обращает внимание на то, что этот корабль в действительности движется по дуге большого круга Земли. Решающим местом в этом отношении является следующее. В начале четвертого дня Бесед и математических доказательств относительно двух новых наук Галилей утверждает (стр. 417 русского издания 1934 г.) Когда тело движется по горизонтальной плоскости, не встречая никакого сопротивления движению, то. движение его является равномерным и продолжалось бы бесконечно, если бы плоскость простиралась в пространстве без конца. Если же плоскость конечна..., то тело, имеющее вес, достигнув конца плоскости, продолжает двигаться далее таким образом, что к его первоначальному равномерному беспрепятственному движению присоединяется другое, вызываемое силой тяжести, благодаря чему возникает сложное движение, слагающееся из равномерного горизонтального и естественно ускоренного движений его я называю движением бросаемых тел .  [c.84]

Однако со временем парадоксы перестают казаться таковыми. Они входят составной частью в основы знания и дефор мируют сам способ мышления. Кого пыне удивишь первым законом Ньютона А во времена Галилея закон инерции казался парадоксальным, так как повседневный опыт в совокупности с авторитетом Аристотеля, казалось бы, говорил о том, что движущееся тело, предоставленное самому себе, обязательно тормозится. Специальная теория относительности, казавшаяся первоначально большинству физиков не более чем логическим вывертом, стала повседневным рабочим инструментом для техники ускорителей, выработала новый релятивист- ский стиль мышлеиия. Ныне человек, выступающий против теории относительности (а такие хоть и редко все же находятся ) кажется замшелым монстром.  [c.4]

Хотя такой эксперимент пока невозможно выполнить с достаточной точностью, данное рассмотрение показывает, что лоренцево сокращение есть реальный эффект в принципе наблюдаемый. Этот эффект в то же время выражает не столько свойство движущегося стержня, сколыю взаимосвязь движущихся друг относительно друга измерительных линеек. Возникает вопрос о причине, вызывающей лоренцево сокращение. Исходя из принципа относительности, нужно считать саму постановку вопроса совернтенно ошибочной. Это все равно что после открытия закона инерции искать причину равномерного прямолинейного движения тела. Такой вопрос, справедливый в античной физике Аристотеля, становится бессмысленным после открытия Галилея, так как, согласно механике Галилея и Ньютона, только отклонение от прямолинейного равномерного движения вызывается какой-либо причиной.  [c.39]

Архимеда, т. е. до времени Стевина (1548—1620), который в 1586 г. впервые занялся механикой наклонной плоскости, и Галилея (1564 — 1642), который сделал первое важное открытие в области кинематики. Таким образом механические принципы, относящиеся к движению тел, не были известны почти до нового времени. Основной ошибкой в рассуждениях большинства исследователей было их предположение о необходимости непрерывно действующей силы для поддержания движения тела. Они думали, что для тела более свойственно состояние покоя, чем движения, что противоречит закону инерции (первый закон Ньютона). Этот закон был открыт Галилеем совершенно случайно при изучении движения тел, скатывающихся по наклонной плоскости на горизонтальную поверхность. Галилей принял следующее основное положение изменение скорости или ускорение определяется силами, которые действуют на тело. Это положение содержит почти целиком два первые положения Ньютона. Галилей применил свои принципы с полным успехом при открытии законов падающих тел и законов движения снарядов. Благодаря своим открытиям он справедливо считается основателем динамики. Он первый применил маятник для измерения времени.  [c.43]

Механика является одной из древнейших паук, ее возникновение и развитие обусловлено потребностями практики. Однако сведения по механике, накопленные человечеством на протяжении многих столетий, представляли собой, как правило, ряд отдельных разрозненных работ, не собранных в единую научную систему. В создании такой системы большую роль сыграли труды Галилео Галилея (1564—1642), впервые сформулировавшего важнейшие понятия механики идеи об инерции вещества, понятие ускорения, законы сложения движений и скоростей, законы падения тел и т. д. С момента выхода в свет в 1687 г. знаменитого сочинения Исаака Ньютона (1643—1727) Математические начала натуральной философии можно считать, что механика действительно стала наукой. В этом труде Ньютон обобщил как опыт своих предшественников, так и результаты Boeii многогранной научной деятельности и в результате систематически изложил основные законы классической механики.  [c.10]


Объяснение движения небесных тел с помощью земной механики стало окончательно возможным только после того, как Декарт сформулировал принцип инерции для прямолинейного движения, а Галилей установил принципы относительности, инерции, независимости действия сил и понятия скорости в данной точке, ускорения, сложения движений. Они, хотя и не были доведены до своего окончательного выражения, составили тот остов, па который могли опираться дальнейшие исследования. В сочетании с законами Ньютона это позволило создать единую механику, объединяющую законы криволинехгаого движения Кеплера и принцниы динамики Галилея.  [c.112]

Строго говоря, сила инерции не подпадает под определение силы, данное ранее. Согласно этому определению (см. 7) силы характеризуют взаимодействие тел, в то врем как силы инерции не обусловлены действием на рассматриваемое тело каких-либо других тел, а возникакгг только как следствие ускоренного даижения СО К. Кроме того, силы инерции зависят от ускорения системы отсчета ад, в то время как ранее предполагалась инвариантность сил по крайней мере по отношению к преобразованиям Галилея. С другой стороны, силы инерции проявляют себя, вызывая ускорение материальной точки, точно так же, как и всякие другие силы, стоящие в правой часта уравнения движения. Поэтому, если обобщить определение сил, положив в основу то, как они фигурируют во втором законе Ньютона и не требуя их инвариантности при переходе от одной СО к другой и вьшолнения третьего закона Ньютона, то силы инерции поддадут под это определение. Так что относипъ ли силу инерции к категории сил или нет - вопрос чисто терминологический.  [c.99]

В основании динамики лежат законы, впервые в наиболее пол-м и законченном виде сформулированные Исааком Ньютоном книге Математические начала натуральной философии (1687 г,). В качестве первого закона Ньютон принял принцип инерции, крытый Галилеем, который можно сформулировать следующим разом. изолированная материальная точка находится в состоя-т покоя шли равномернЬго ы прямолинейногс движения.  [c.238]


Смотреть страницы где упоминается термин Закон инерции Галилея—Ньютона : [c.22]    [c.40]    [c.301]    [c.392]    [c.85]    [c.28]    [c.812]   
Курс теоретической механики для физиков Изд3 (1978) -- [ c.36 ]

Динамические системы-3 (1985) -- [ c.15 ]



ПОИСК



Галилей

Галилея

Галилея закон

Галилея закон инерции

Закон Ньютона,

Закон инерции

Ньютон

Ньютона закон (см. Закон Ньютона)



© 2025 Mash-xxl.info Реклама на сайте