Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линии спектра «последние

Линии спектра последние 589, 509  [c.813]

Исследование показывает, что последний характеризует молекулы водорода, тогда как первый, состоящий из дискретных линий, относится к атомам водорода, образовавшимся в разрядной трубке вследствие диссоциации молекулы под действием разряда. Спектры различных атомов отличаются чрезвычайным разнообразием, причем в некоторых из них, например в спектре железа, насчитывается несколько тысяч линий. Тем не менее, мы без особого труда отличаем эти богатые линиями спектры атомов от полосатых спектров молекул с определенной группировкой многочисленных линий.  [c.711]


Сущность метода совпадений (который в последнее время очень широко используется в экспериментальной ядерной физике) применительно к рассматриваемой задаче заключается в следующем. Регистрация а-распада производится двумя детекторами. Один детектор измеряет со сравнительно невысокой точностью ( 5%) энергию а-частиц, а другой — энергию у-кван-тов. Импульсы от обоих детекторов поступают в специальную радиосхему, срабатывающую только при одновременном поступлении импульсов. Это означает, что при высокой разрешающей способности схемы по времени и при соответствующей настройке детекторов она будет регистрировать только те а-частицы, одновременно с которыми испускаются сопровождающие их -кванты, т. е. может выбирать редкие явления на большом фоне. Таким способом удается регистрировать линии, интенсивность которых в раз меньше интенсивности основной линии спектра.  [c.119]

В данном случае последнее правило отбора не играет роли. С помощью правил нетрудно выяснить возможные пере.ходы, которые для главной серии указаны стрелками на рис. 83. Видно, что всего возможно 10 различных переходов. Каждый из них приводит к излучению отдельной линии в спектре излучения. Таким образом, при помещении атома натрия в магнитное поле каждый дублет главной линии серии излучения натрия расщепится на 10 линий. Соответствующим образом на большее число линий расщепятся и другие линии в спектре излучения. Явление расщепления линий спектра излучения при помещении атома в слабое внешнее магнитное поле называется аномальным или сложным эффектом Зеемана. Слово аномальный имеет историческое происхождение. Первоначально было изучено и понято расщепление линий в спектре излучения некоторых атомов на три линии. Это расщепление было названо нормальным, хотя в действительности оно  [c.251]

Большинство задач эмиссионного анализа решается при использовании спектральных линий, расположенных в видимом, ближнем ультрафиолетовом (УФ) и инфракрасном (ИК) участках спектра. В соответствии с этим чаще всего применяются спектрографы, работающие в интервале длин волн 200—1000 нм. Они строятся как с применением дифракционных решеток, так и призменных систем. В последнем случае приборы подразделяются на две группы 1) для УФ-области спектра и 2) для видимой и ближней ИК-области. В приборах первого типа призмы и другие оптические детали обычно изготовляются из кварца, в приборах второго типа — из стекла.  [c.8]

Рассмотренные два крайних случая имеют место тогда, когда концентрации примесей в образце достаточно велики и в спектре появляется довольно много характерных линий элементов примесей, или же они очень малы и последние линии не появляются. Существует большое количество промежуточных случаев, когда расшифровка делается не так просто. К ним относятся анализы образцов, в которых концентрация примесей близка к границе чувствительности метода определение элементов, не имеющих достаточного количества последних линий в доступной для исследования области спектра анализ образцов со сложными спектрами, где расшифровка затруднена вследствие многочисленных наложений.  [c.37]


Может оказаться, что в атласе спектров не указаны последние линии элементов, содержащихся в исследуемой смеси реактивов, или отождествление линии вызывает сомнение. В этом случае необходимо произвести тщательное измерение длины волны спектральной линии. Отождествление ее производится с помощью таблиц и с учетом возможных наложений со стороны линий угольных электродов и линий других элементов, присутствующих в пробе. Нужно по возможности сузить круг поисков этих элементов. Исключаются элементы, линии которых не возбуждаются в дуге или очень слабы, а также присутствие которых мало вероятно. Поиск оставшихся элементов производится так же, как и анализ на заданные элементы.  [c.38]

Первоначально снимите несколько спектрограмм при разных давлениях газа (гелия или аргона) в диапазоне от 50 до 400 Па. Силу тока поддерживайте постоянной ( 50—100 мА). Затем сфотографируйте спектры при разной силе тока и постоянном давлении. Давление установите вблизи оптимального для линии лития 670,78 нм (последнее оценивают путем визуального сравнения снятых спектрограмм). Силу тока изменяйте от 20 до 100 мА через 20 м А.  [c.86]

Предварительно оценивают получаемую щирину исследуемой линии и сравнивают ее с величиной спектральной щирины щели. Спектральную щирину щели находят теоретически, исходя из размеров геометрического изображения щели и дифракции на действующем отверстии прибора (см. задачу 1). Оценка спектральной щирины щели может быть также сделана по тонким линиям железа. В последнем случае будут учтены все факторы, в том числе качество изображения спектра в приборе и аппаратная функция фотослоя.  [c.276]

Две первых из этих линий наблюдаются в спектрах туманностей, последняя совпадает с яркой зеленой линией, наблюдаемой при свечении верхних слоев земной атмосферы. В лабораторных условиях эти линии возникают при свечении смеси кислорода с каким-либо инертным газом.  [c.250]

Спектры редких земель и их ионов в большинстве случаев чрезвычайно сложны, они содержат по 10 и более тысяч линий, расположенных без всякого видимого порядка. Однако в последние годы в результате многочисленных проведенных исследований, в частности, спектров поглощения, спектров, возбуждаемых в вы-  [c.289]

Именно эти особенности нашли свое отражение в результатах численных расчетов, учитывающих излучение атомов в линиях. Хотя спектральный коэффициент излучения и возрастает при этом весьма существенно, радиационный тепловой поток увеличивается относительно мало. Последнее связано с влиянием самопоглощения, а также радиационного охлаждения, которые проявляются тем сильнее, чем больше толщина сжатого слоя. В некоторых работах [Л. 10-1, 10-6] высказывается мнение, что при инженерных расчетах qn для достаточно толстых слоев излучающего газа допустима стопроцентная ошибка в определении величины коэффициента поглощения вакуумного ультрафиолета, поскольку отклонение <7д при этом не превысит 20%. В настоящее время принято увеличивать в 1,5 раза величину радиационного теплового потока, рассчитанного для сплошного излучения (кривая на рис. 10-4), с тем, чтобы учесть излучение атомов в линиях (соответствующая скорректированная зависимость представлена кривой 5 на рис. 10-4). При численном анализе можно ограничиться введением дополнительной ступеньки в спектральном распределении коэффициента поглощения, учитывающей излучение в линиях атомов в видимой и инфракрасной областях спектра [Л. 10-1].  [c.293]

Как видно из рис. 7-4, при фиксированной температуре величина /о, X имеет максимум, и тем более резко выраженный, чем выше температура. В областях очень коротких и очень длинных волн линия /о. > стремится к слиянию с осью абсцисс. С увеличением температуры интенсивность лучеиспускания растет, но по-разному в разных частях спектра. При больших X этот рост незначителен, при малых л, напротив, он исключительно велик. Последнее обстоятельство связано с тем, что максимумы интенсивности лучеиспускания при увеличении температуры смещаются в сторону коротких волн. Указанное смещение максимумов /о,,,  [c.198]

Члены с коафициентом /Зуд- обусловливают очень малое расщепление каждой линии на составляющие, характеризующиеся различными К- Такую структуру, однако, еще не удалось разрешить. Усреднение членов с коэфициентами Ьуд- и Dj приводит к небольшому систематическому изменению расстояний между последовательными линиями, а такмсе к тому, что четные линии ветвей / уже не совпадают в точности с линиями 5. Последнее обстоятельство, хотя тоже не приводит к заметному расщеплению, но проявляется в том, что нечетные линии R не расположены точно посредине между соседними линиями S. Это видно нз табл. 6, которая также ясно показывает систематическое изменение расстояний между линиями. Учитывая поправочные члены, Льюис и Гаустон [576] получили из экспериментально наблюденных комбинационных частот, приведенных в табл. 6, для вращательной постоянной В значение 9,92 см", которое очень хорошо совпадает со значением 6=9,945 m S полученным из инфракрасного вращательного спектра (см. стр. 46). Такое количественное совпадение, а также качественная структура спектра (в частности, появлений лишь линий, для которых ДЛ =0) с несомненностью показывает, что молекула NHj является симметричным волчком, ось которого совпадает с осью симметрии (осью симметрии третьего порядка).  [c.49]


В лабораторных условиях для новейших низкопоглощаю-щих, не содержащих свинца пленок с просветляющими покрытиями, при работе с полупроводниковыми инжекционными лазерами на длине волны 1 = 800 нм были получены очень высокие коэффициенты пропускания ЛИН. поляр — более 65% при оптимизированной толщине (ПКМ при этом составлял 230°). Эти пленки относят к классу пленок с большим периодом решетки (БПР), в которых период решетки увеличивается пропорционально увеличению содержания висмута. Возможны методы дальнейшего увеличения периода решетки и увеличения содержания висмута, приводящие к дальнейшему увеличению Гг, ЛИН. поляр до значений, превышающих 95% в ближней ИК области лазерного излучения, 90% для линии спектра Ма в 589 нм и 60% для зеленой линии в 546 нм. Эти планируемые к использованию составы пленок относят к классу материалов с очень большим периодом решетки (ОБПР) (рис. 1.12) [19]. Последние работы по ионной имплантации открыли пути к увеличению анизотропии, так что можно надеяться, что низкие переключающие поля все же будут достигнуты [20].  [c.30]

Эффект Зеемана на линиях спектров иопов, находящихся в чисто-кубическом ноле, до недавнего времени был мало изучен. Было выполнено лишь одно исследование по изучению явления Зеемана на линии люминесценции иона Сг , находящегося в чисто-кубическом ноле симметрии Оц кристалла MgO [39]. Вместе с тем интерес к исследованиям такого рода возрос в последнее время в связи с появлением новых эффективных лазерных сред МеРг— TR , где ион TR находится в чисто кубическом поле кристалла.  [c.102]

Развитие лазерной техники дало возможность значительно расширить круг используемых в задачах лазерного зондирования влажности атмосферы лазеров. Это в первую очередь лазеры на красителях. С помощью таких лазеров, перестраивающихся в области полосы поглощения водяным паром 0,72 мкм [24, 27], были проведены успешные измерения влажности во всей толще тропосферы. Все более широкое использование приобретает перестраиваемый в диапазоне 0,72... 0,78 мкм лазер на основе кристалла александрит [26]. Самые широкие перспективы для лазерного зондирования влажности атмосферы открываются при использовании лазера на кристалле сапфир с титаном, обладающего уникальными возможностями непрерывной перестройки длины волны излучения в необычайно широком спектральном диапазоне, от 650 до 1150 нм. В районе 1,77 мкм проводилось зондирование водяного пара с помощью параметрического генератора света (ПГС) на основе ниобата лития [34] и перестраиваемого лазера на кристалле Со Mgp2 [53]. В среднем ИК-диапазоне спектра первые измерения профилей влажности проводились вдоль горизонтальной трассы с помощью импульсного СОг-лазера [63] с ис пользованием дискретной перестройки длины волны излучения на линиях Р(12), Р(18) и Р(20) в 10-мкм полосе излучения. Малая эффективность обратного рассеяния в этой области спектра естественно снижает диетанционность зондирования при прямом детектировании лидарных сигналов. Даже при энергии в импульсе 1 Дж в этих измерениях профиль влажности устойчиво восстанавливался на расстояниях не более 1 км. Однако в этой области спектра последние годы активно развиваются чувствительные методы когерентного (гетеродинного либо гомодинного) приема лидарных сигналов. Они значительно повышают потенциал лидара даже при умеренных энергиях лазерного передатчика. Первые сообщения об измерениях профилей влажности с помощью когерентного лидара на основе гетеродинного СОг-лазера приведены в [40].  [c.191]

Широкое применение С. а. находит в астрофизике. Спектральные линии являются единственными вестниками о составе небесных тел. С. а. внешних частей солнца и других звезд, испускающих сплошные спектры, производится по фраунгоферовым линиям (см.). Состав туманностей и звезд, испускающих линейчатые спектры, производится путем сравнения линий спектров с линиями земных элементов. Этим методом установлено, что туманности состоят преимущественно из легких газов водорода, гелия и т. д. До последнего времени в спектрах многих туманностей оставался ряд линий, которые не удавалось идентифицировать с линиями известных элементов на этом основании предполагалось существование гипотетич. элементов, напр, небулия . В настоящее время удалось показать, что эти линии принадлея ат известным элементам (высокоионизированным азоту, кислороду и т. д.), т. ч. отпадает необходимость допускать существование в туманностях элементов, неизвестных на земном шаре. Вид спектральных линий (их ширина, смещение и т. д.) позволяет судить о физических условиях на поверхности небесных тел и об их радиальных скоростях.  [c.304]

После разделения контура на отдельные участки целесообразно оценить для каждого из них удельную мощность нейтронного и у-излучений по ряду наиболее интенсивных линий энергетических спектров излучений и линий с повыщенными энергиями даже при малой интенсивности. После прохождения больщих толщин защиты последние могут конкурировать с линиями меньщей энергии. Рекомендуется не увлекаться чрезмерным дроблением энергетического спектра излучений на группы.  [c.101]

Рассуждения Допплера применимы ко всем волновым явлениям — оптическим, акустическШи и иным. Допплер наблюдал (качественно) предсказанное им явление в акустических процессах и высказал предположение, что различие в окраске некоторых звезд обусловлено их движением относительно Земли. Последнее заключение неверно. Для подавляющего большинства звезд влияние их движения сказывается лишь в незначительных изменениях положения спектральных линий в спектре звезд. Тем не менее применимость принципа Допплера к оптическим явлениям не возбуждает сомнений. Впервые надежное экспериментальное установление  [c.432]

Установив в опытах над магнитным вращением плоскости поляризации света связь между магнитными и оптическими явлениями, Фарадей предпринял также попытку воздействовать магнитным полем на спектральные линии. Один из последних его опытов (1862 г.) состоял в наблюдении спектра паров натрия, помещенных между полюсами, электромагнита, при включении и выключении поля. Отсутствие какого бы то ни было эффекта объясняется, как мы уже знаем, недостаточностью технических средств, которыми располагал Фарадей (малая разрещающая способность спектрального аппарата при слабых магнитных полях, применявшихся им).  [c.621]


Выбор спектрографа. Выбор типа спектрографа определяется спектральной областью, в которой располагаются аналитические линии, и степенью сложности спектра исследуемой пробы (см. введение). Спектрографы средней дисперсии ИСП-22, ИСП-28, ИСП-30 охватывают широкий диапазон длин волн от 200 до 700 нм, где располагаются последние линии большинства химических элементов. Поэтому они применяются для анализа многих металлов, сплавов и образцов минерального происхождения, спектры которых не отличаются особой сложностью. Образцы, содержащие переходные элементы и обладающие многолинейчатыми спектрами, анализируются с помощью спектрографов высокой дисперсии ДФС-13, ДФС-8, СТЭ-1 и др. Так как отношение интенсивности линии к интенсивности сплошного фона согласно (1.16) и (1.17) растет с увеличением дисперсии, применение таких спектрографов приводит к повышению относительной чувствительности анализов.  [c.31]

Определение А1, Ре, Мп, 8п, РЬ, 2п в латуни (анализ на заданные элементы). Спектрограмму получают следующим образом. На фотопластинке фотографируют спектр исследуемого образца— латуни и по обе стороны от него — спектры железа и меди. Экспозицию для спектра меди выбирают несколько большей, чем для спектра латуни (на л 20%). Фотографирование спектров ведут с применением гартмановской диафрагмы. Спектр железа в дальнейшем служит шкалой длин волн при расшифровке спектр меди используют при выборе последних линий, не имеющих наложений с линиями меди.  [c.36]

При расшифровке спектрограмм используют спектропроектор, атлас спектров и таблицы спектральных линий. На экране спект-ропроектора получают увеличенные в 20 раз изображения отдельных участков спектрограммы. Атлас спектров представляет собой набор планшетов с фотографиями отдельных участков спектра железа, где отмечены положения последних и наиболее интенсивных линий большинства элементов. Фотографии получены с тем же увеличением, что и у спектропроектора. В таблицах спектральных линий приведены длины волн спектральных линий всех элементов и длины волн последних линий.  [c.36]

Рассмотрим порядок проведения анализа на какой-либо один элемент из числа заданных. Прежде всего необходимо разобраться в спектре железа. Для этого, сравнивая полученную спектрограмму со стандартной, имеющейся в лаборатории, нужно отметить на фотопластинке характерные линии и группы в спектре железа, указанные на стандартной спектрограмме. Сравнение можно провести путем наложения спектрограмм, пользуясь при этом лупой. Из таблиц последних линий нужно выписать длины волн линий определяемого элемента и их интенсивности. Далее, ориентируясь по отмеченным группам в спектре железа, на экран спектропроектора проектируется тот участок спектрограммы, где предполагается присутствие последних линий. Изображение спектра железа нужно совместить с изображением его на соответствующем планшете атласа спектров. Зная длины волн разыскиваемых линий и пользуясь спектром железа как шкалой длин волн, находят места на спектрограмме, где должны располагаться эти линии. Рассмотрим следующие две возможности отождествления линий.  [c.36]

Такой порядок фотографирования спектров позволит упростить процесс отождествления линий на спектрограмме. Начинать расшифровку нужно со снимка, соответствующего последним 5 с испарения пробы (из общего времени испарения 20 с), содержащего наименьщее число линий. На нем будут зарегистрированы лишь последние и наиболее интенсивные линии элементов исследуемой смеси.  [c.37]

Рассматривая спектрограмму через спектропроектор, можно отождествить последние линии на спектрограмме с последними линиями, отмеченными в атласе спектров. Таким образом, по крайней мере один компонент из числа присутствующих в иссле-  [c.37]

Вследствие большого квантового дефекта нижнего терма З Р он расположен довольно глубоко. Резонансные линии А1, соответствующие переходам З Р—4 S и З P—З B, лежат в ближней УФ-части спектра. Другие линии обеих побочных серий являются еще более коротковолновыми. Интересно отметить, что терм 4 5 располагается значительно глубже терма З B, хотя главное квантовое число у последнего меньше.  [c.63]

В табл. 19.2 собраны данные о потенциале ионизации легких и средних атомных ионов, характеризующие все ступени ионизации ионов с зарядом ядра Z<36 и представляющие интерес для физики высокотемпературной плазмы. Большая часть данных для низких степеней ионизации ионов была получена на основе обработки наблюдаемых спектров оптических переходов при высоких уровнях возбуждения частиц, тогда как в случае многократной ионизации использовались различные приемы экстраполяции потенциалов вдоль изоэлектронных серий [2,5,6]. В табл. 19.3 приведены значения потенциала ионизации одно-, двух- и трехзарядных атомных ионов с 37схождения линий в атомных спектрах [2,3,5,6]. Погрешности в определетш искомых значений потенциалов ионизации атомных частиц в табл. 19.1 —19.3 были учтены нами при округлении значащих цифр в пределах 1 для последней приведенной цифры.  [c.411]

Оптическая система установка ИМАШ-18 состоит из объектива 11 с большим рабочим расстоянием, укрепленного на опак-иллюминаторе 12 специального металлографического микроскопа. В осветителе микроскопа 13 применена ртутная газоразрядная лампа сверхвысокой яркости типа ДРШ-100-2 мощностью 100 Вт. Яркость свечения жгута паров плазмы в этой лампе составляет около 100 кстб. Следует напомнить, что яркость электрической дуги составляет всего около 15 кстб. Визуальное наблюдение за структурой образца осуществляется через окуляр 14 и монохроматический узкополосной светофильтр 15. Последний является одним из важных элементов оптической системы [58]. Он пропускает преимущественно волны с длиной X = 546 мкм (ртутная линия в спектре лампы) и срезает собственное световое излучение образца, а также волны других длин из спектра лампы. При этом становится возможным прямое наблюдение за микроструктурой образца в отраженном свете, а также фотографирование или киносъемка ее камерой 16.  [c.138]

К приближённым методам относятся метод последних линий, метод спектров равнения и метод соответственных дублетов. Точность их—от 5 до 20%. Приближённые методы применяются главным образом для определения типа сплава.  [c.119]

Последнее и предпоследнее слагаемые в (4) появились в результате модуляции колебаний индуцированного дипольного момента колебаниями ядер в результате в спектре рассеянного света кроме линии частоты G) появляются спутники с комбинац. частотами ш —со и (й+со. Интенсивность линий К. р. с. пропорд, (da/dq/)l. Если в разложении (3) учесть члены высших порядков, то в выражении для р(() появятся члены, объясняющие существование обертонов [их интенсивности и т. Д.] и составных топов [их интенсивности (d /dq дд с)о и т. д.]. Такой способ рассмотрения возможен при малых амплитудах колебаний ядер, что обеспечивает сходимость ряда (3) во всём интервале изменений д,. К. р. с. в отличие от рэлеевского рассеяния некогерентно, поскольку нач. фазы б,- колебаний ядер отд. молекул соверпгенно независимы.  [c.420]

Л-ветвь). В отличие от спектров линейных молекул каждая /-линия в этом случае имеет т. и. АГ-структуру, соответствующую последнему члену в (7). Напр., для КНз DJK = —45 МГц и с высокочастотной стороны каждой /-линии наблюдаются Л-линии, отстоящие от линии с К = о на 90(/ + 1)Л МГц. Правило отбора АК — о нарушается при учёте колебательно-вращат, взаимодействия, ангармонизма и нежёсткости молекулы.  [c.202]



Смотреть страницы где упоминается термин Линии спектра «последние : [c.376]    [c.116]    [c.491]    [c.396]    [c.186]    [c.327]    [c.125]    [c.171]    [c.416]    [c.30]    [c.838]    [c.82]    [c.148]    [c.574]    [c.606]    [c.63]    [c.491]    [c.400]   
Прикладная физическая оптика (1961) -- [ c.509 , c.589 ]



ПОИСК



35 Зак последние

Линии «последние



© 2025 Mash-xxl.info Реклама на сайте