Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь Обработка электроконтактная

При электроконтактном нагреве нельзя не учитывать исходной структуры (дисперсности) и химического состава закаливаемой стали. Мелкозернистая структура одного и того же металла, обладая большей суммарной поверхностью раздела, является менее электропроводной. Исследования показывают значительное повышение электропроводности закаленной стали и., мере увеличения температуры отпуска, что связано с понижением дисперсности ее структуры. Отдельные составляющие структуры поликристаллов, как, например, перлит, феррит и цементит, также обладают различным сопротивлением прохождению тока. Наибольшее сжатие силового потока, а также и наиболее высокая температура возникают по границам включений или пор. Это обстоятельство имеет важное практическое значение для обработки поверхностных слоев, образованных при восстановлении деталей наплавкой и металлизацией, содержащих много пор и других объемных дефектов. При расчетах предусмотрено использование среднего сопротивления электрической цепи. В действительности составляющие структуры поликристалла можно представить как параллельные проводники, имеющие различные сопротивления. Однако следует иметь в виду, что каждый повер.хностный микроучасток в процессе обработки подвергается нескольким термомеханическим воздействиям, что способствует некоторому выравниванию температуры.  [c.20]


Опыт применения электроконтактного фрезерования для обработки лопастей гребных винтов из легированной стали показывает перспективность этого метода при соответствующей конструктивной доработке его. В табл. VII.9 VII.10 и фиг. VII.10 приведены некоторые сведения об у о-виях проведения и результатах электроконтактного фрезерования, на фиг. Vli.ll—зависимости, относящиеся к электромеханическому шлифованию.  [c.238]

Для электроконтактной обработки применяют инструменты из меди, латуни, чугуна, дешевых марок стали. Возможно применение и обычных эрозионно-стойких материалов. Серый чугун имеет удовлетворительную эрозионную стойкость при обработке на всех режимах. Он хорошо обрабатывается, недорог, из него вьшолняют электроды-инструменты для чистовых операций.  [c.275]

Диски для электроконтактной резки изготовляют из стальных или алюминиевых листов с покрытием торцовых поверхностей изоляционно-абразивным слоем (эпоксидной смолой), что позволяет во время резки не только предотвращать появление разрядов по боковым поверхностям, но и очищать поверхность реза от оплавленного слоя на глубину 0,2. .. 0,3 мм. Окружная скорость диска при электроконтактной обработке может доходить до 60 м/с. Например, диск выполнен из стали 45, имеет окружную скорость до 50 м/с, почти не подвергается изнашиванию. Это преимущество электроконтактной обработки позволяет сэкономить большое число абразивов. Например, одним абразивным кругом до полного его изнашивания обрабатывают 2000 траков, а стальным диском на электроконтактном станке обрабатывают свыше 500 ООО траков для тракторов.  [c.353]

Электроконтактная обработка основана на локальном нагреве заготовки в месте контакта с электродом-инструментом и удалении размягченного или даже расплавленного металла из зоны обработки механическим способом относительным движением заготовки и инструмента. Источником теилоты в зоне обработки служат импульсные дуговые разряды. Электроконтактную обработку (ЭКО) оплавлением рекомендуют для обработки крупных деталей из углеродистых и легированных сталей, чугуна, цветных сплавов, тугоплавких и специальных сплавов.  [c.405]

Применение электрофизических и электрохимических способов размерной обработки материалов, предназначенных главным образом для отраслей новой техники, где широко применяются жаропрочные, нержавеющие, магнитные и другие высоколегированные стали и твердые сплавы, полупроводники, рубины, алмазы, кварц, ферриты и другие материалы, обработка которых обычными механическими способами затруднительна или часто невозможна. К числу электрофизических способов обработки относятся электроискровая, электроим-пульсная, электроконтактная и анодно-механическая.  [c.122]


Электроэрозиоиная обработка применяется в двух основных разновидностях—электроискровой и электроимпульсной. К ним примыкают методы анодно-механической и электроконтактной обработки, нередко рассматриваемые как самостоятельные. Имея в основном одну физическую природу, электроискровая и электроимпуль-сная обработки имеют и существенные различия. В первой из них энергоносителями являются электроны и используется искровая форма разряда, во второй — энергоносителями являются ионы, используется дуговая форма разряда. Производительность электроимпульсной обработки ПО стали достигает 25 000 мм /мин, тогда как у электроискровой она не превышает 600 мм /мин. Сильно отличается относительный износ инструмента при электроискровом способе он достигает 25—100% от массы снятого металла, при электро-импульсном — только 0,05—0,3%.  [c.142]

Термическая обработка с применением скоростного электронагрева позволяет получать высокодисперсную структуру металла и является перспективным методом упрочнения длинномерных деталей, в частности, глубиннонасосных штанг (d = 16 25 мм / =8000 мм). Л.А.Ефи-мова и В.В.Булавин [122, с. 110—112] изучали влияние скорости нагрева при нормализации и закалке сталей 40 и 20HIVI на сопротивление усталостному разрушению. При печном нагреве скорость нагрева составляла 2°С/с, а при электроконтактном 30—35°С/с. Испытания проводили на стандартных вращающихся с частотой 0,75 и 50 Гц образцах при консольном изгибе в воздухе, 3 %-ном растворе Na I и пластовой воде, содержащей 30 % нефти, при/У= 10 цикл.  [c.55]

Установлено (табл. 8), что в 3 %-ном растворе Na I существенных преимуществ электронагрева перед печным нагревом нет при обоих видах нагрева условный предел коррозионной выносливости составляет в среднем 160-180 МПа. В пластовой воде сопротивление коррозионноусталостному разрушению сталей, подвергнутых термической обработке с использованием электронагрева, приводящему к диспергированию структуры, значительно выше, что связывают с уменьшением агрессивности коррозионной среды. Основанием для такого заключения является и тот факт, что при переходе к испытаниям в воздухе эффективность применения электроконтактного нагрева возрастает.  [c.55]

В некоторых случаях требуется сообщить детали высокую поверхностную твердость и износостойкость при сохранении вязкой сердцевины. Это достигается поверхностной закалкой или химико-термической обработкой. Поверхностная закалка заключается в нагреве с большой скоростью поверхностного слоя металла до температуры выше интервала превращений и последующем быстром охлаждении. Этот метод применяется для закалки шеек коленчатых валов, зубьев шестерен, шпинделей, направляющих станков и других деталей, изготовляемых главным образом из углеродистых и низколегированных сталей. Нагрев деталей при поверх-но стной закалке, как правило, осуществляется при помощи токов высокой частоты. Может также применяться нагрев газовым пламенем или Электроконтактным шо собом по методу проф. Гевелинга.  [c.11]

Основной особенностью электроконтактной обработки является высокая производительность процесса до 3000 мм /с при низком качестве обработки. На мягких режимах производительность составляет 1 мм /с при Rz = 80- 20 мкм и глубине микротрещин на твердых сплавах или закаливающихся сталях до 0,3—0,5 мм. Во всех случаях отмечаются наплывы на кромках обработанной поверхности. Элек-троконтактную обработку выполняют в воздушной и жидкой среде. Производительность обработки линейно растет с увеличением напряжения и мощности источника питания. Этот метод применяют в основном для обработки крупных деталей. Он может быть использован для зачистки литейных поверхностей и сварных швов.  [c.295]

Существует большая группа сварных изделий — сварной режущий инструмент. В работе [227] изучено влияние ТЦО на структуру и механические свойства сварных швов заготовок инструмента. Для экономии дорогостоящих быстрорежущих сталей режущий инструмент обычно изготавливают, предварительно сваривая заготовки из быстрорежущих сталей, например Р6М5, и конструкционных (углеродистых и низколегированных). Быстрорежущая часть заготовки предназначена для рабочей (режущей) зоны инструмента, конструкционная, например из стали 45,— для хвостовиков сверл, фрез, метчиков и т. д. Сварку сталей производят двумя наиболее распространенными способами трением и электроконтактным оплавлением. Сварной шов в месте соединения быстрорежущих и конструкционных сталей характеризуется большой твердостью (до 63—65 ННСэ), хрупкостью и практически не обрабатывается резанием. Большая твердость шва обусловлена закалкой поверхностных слоев при охлаждении на воздухе от температур оплавления и появлением в его структуре ледебуритных игл — крупных карбидных включений. Значительная хрупкость зоны шва связана с потерей пластичности сталью, перегретой при сварке до оплавления, и с ускоренной кристаллизацией и последующей закалкой. Такая структура неудовлетворительна не только для механической обработки при изготовлении инструмента, но и для окончательной ТО — закалки и соответствующего отпуска. Дело в том, что если производить закалку сварного соединения, в структуре которого имеется ледебурит, то получаемая структура мартенсита с иглами крупных карбидов тоже имеет неудовлетворительные свойства. На практике часто сварные швы не подвергают закалке.  [c.225]


Перспективны процессы электроконтактной обработки заготовок из таких сталей, как сталь марки Г13Л (например заготовок брони конусных дробилок).  [c.13]

Применение переменного тока удешевляет процесс воздушнодуговой резки. Однако при резке на переменном токе с использованием обычных сварочных трансформаторов дуга часто сдувается воздушной струей и гаснет в момент перехода тока через нулевое значение. Для резки на переменном токе поэтому целесообразно применять специальные трансформаторы с пологоподающей внешней характеристикой, обеспечивающие резкое возрастание тока при коротких замыканиях электрода на металл и взрывообразное разрушение перемычек металла. Такой трансформатор типа ТРП-1200 разработан В. С. Павлюченко, который также изучал способ воз-душно-электроконтактной резки на переменном токе. Резка производится переменным током 1100—1300 а при напряжении дуги 28— 30 в используются графитизированные электроды размером 15 х X 25 X 450 мм (для обработки отливок) или 12 х 12 х 400 мм и 16 X 16 X 400 мм ( щя разделки трещин и фасок под сварку и прорезания узких щелей). Коэффициент выплавления металла составляет 18—20 е/а ч для хромоникелевой стали и до 42 г/а ч для меди.  [c.214]

Электроконтактная разновидность электроэрозионного способа была применена еще в 1925 г. для резки заготовок. Она внешне напоминает аиодно-механическую обработку. Различие состоит в том, что здесь электролит не применяется и процесс осуществляется обычно на воздухе. Иногда зона обработки охлаждается сжатым воздухом, маслом или эмульсией. Таким образом, Б электроконтактном способе исключено электрохимическое растворение обрабатываемого материала. Скорость перемещения 1нструмента относительно детали при электроконтактном способе увеличена в 2,5—3 раза по сравнению с анодно-механической обработкой и составляет 30—80 м/сек. Деталь и инструмент подключаются к источнику переменного или реже постоянного тока напряжением 20—40 в. Электроконтактный способ позволяет подводить к месту обработки очень большие мощности (50—200 кет) и получать наибольшие съемы металла по сравнению с другими разновидностями электроэрозионной обработки. При обработке обычных сталей глубина оплавленного слоя достигает 1 — 1,5 мм, при обработке жаропрочных сталей 0,2—0,3 мм. Интенсивность съема металла достигает 500 кГ/ч [96]. Электроконтактный способ пригоден для черновой обработки, например, обдирки слитков и поковок из специальных сплавов.  [c.357]

Источник питания — понижающий трансформатор мощностью от десятков до сотен киловатт. Максимальная скорость съема при электроконтактном фрезеровании достигает 1 млн. мм 1мин, или 500 кг ч. Способ используется для обдирки перед прокатом слитков из специальных сталей, предварительной обработки фасонных поверхностей типа лопастей гидротурбин (фрезерование по копиру), разрезки заготовок и других подобных операций.  [c.18]

Температурное поле в зоне резания, вызванное плазменным нагревом. Основным фактором, позволяющим интенсифицировать процесс резания при плазменном нагреве, является тепловое разупрочнение обрабатываемого материала и изменение условий трения на контактных поверхностях инструмента. Оба эти явления присущи и другим комбинированным методам механической обработки, связанным с введением в зону резания дополнительной тепловой энергии, например резанию с электроконтактным подогревом (ЭКП), когда инструмент и заготовка подключаются к электрической цепи низкого напряжения и большой силы тока, или резанию с нагревом обрабатываемого материала токами высокой частоты (ТВЧ). Важно сопоставить плазменный способ нагрева с другими способами и выяснить, какими теплофизическими особенностями он обладает. Ответ на этот вопрос может быть получен при сравнительном анализе температурных полей в зоне резания, вызванных тем или иным видом нагрева без учета теплоты собственно процесса резания. Температурное поле, рассчитанное методом источников, в зоне резания при нагреве заготовки из стали 12Х18Н9Т плазмотроном эффективной мощностью 1 т1 = 12 кВт с коэффициентом сосредоточенности теплового потока дуги о = 6 см при расстоянии от кромки инструмента = 60 мм приведено на рис. 26, а. Режим резания 1=7 мм 5=1 мм/об v = 20 м/мин. Резец с пластиной ВК8, у = 0°, а = 6°, ф =  [c.58]

Пример. При обработке заготовки из стали 30Х10Г10Л твердосплавным резцом из сплава Т14К8 со скоростью резания 0,8 м/с, подачей 0,3 мм/об, глубиной резания 1 мм использовался электроконтактный подогрев от трансформатора РИО 250-5 (см. рис. 6.6, в). Напряжение 1,5. .. 2 В, сила тока 100 А. Энергия на нагрев в единицу времени с учетом потерь составляет Е = 200 Вт, энергия на резание при температуре 0р = 800 °С р = Р, = 2400 Вт.  [c.192]

Основной особенностью электроконтактной обработки является высокая производительность процесса - до 3000 mmV при низком качестве обработки шероховатости поверхности Лг = 20. .. 80 мкм. На заготовках из твердых сплавов и закаленных сталей наблюдаются микротрещины до 0,3. .. 0,5 мм. Во всех случаях отмечаются наплывы на кромках обработанной поверхности.  [c.193]

Упрочняющ,ая термическая обработка арматурных сталей проводится как с прокатного нагрева, так и с использованием электроконтактного нагрева.  [c.184]


Смотреть страницы где упоминается термин Сталь Обработка электроконтактная : [c.235]    [c.238]    [c.116]    [c.869]    [c.451]   
Справочник технолога машиностроителя Том 1 (1963) -- [ c.560 , c.572 , c.575 ]



ПОИСК



Обработка электроконтактная

Сталь обработка



© 2025 Mash-xxl.info Реклама на сайте