Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ниобий нитрид

В ниобии и тантале технической чистоты примеси внедрения при обычном их содержании находятся в растворе, а в молибдене и вольфраме (вследствие малой растворимости) — в виде дисперсных выключений — карбидов, нитридов, оксидов, располагающихся по границам зерен или в приграничных объемах. Это способствует хрупкому разрушению, и порог хрупкости у молибдена и вольфрама резко сдвигается в область более высоких температур.  [c.532]

Положительное влияние вакуума на качество сварных соединений выражается в том, что значительно ускоряются и облегчаются процессы выхода газов и диссоциации оксидов не только в поверхностных, но и из внутренних слоев металла. Удаление кислорода и азота из сварочной ванны при электронно-лучевой сварке происходит тем полнее, чем больше упругость диссоциации оксидов и нитридов. Так, при сварке меди, кобальта, никеля в камере с разрежением 6,5-10 Па обеспечивается диссоциация оксидов этих металлов. Также диссоциируют нитриды алюминия, ниобия, хрома, магния, молибдена и некоторых других металлов с высокой упругостью диссоциации нитридов.  [c.401]


Покрытие твердых сплавов тонким слоем (5—15 mkv ) карбидов (титана, ниобия), боридов, нитридов позволяет повысить их износостойкость в 5—6 раз.  [c.71]

Образцы спектрально-чистого ниобия при испытании на ползучесть и длительную прочность при 1400—2000 °С в вакууме 10" Па были пластичными, а в вакууме 10 Па разрушались по границам зерен [1], Однако вакуум 10 —10 Па и инертные газы промышленной чистоты нельзя считать нейтральными средами, не воздействующими на ниобий при 1000—1800 °С. Наличие даже небольшого количества примесей кислорода, углерода и азота приводит к образованию оксидов, карбидов и нитридов на поверхности и по границам зерен и к ухудшению свойств (табл. 38).  [c.106]

Как уже отмечалось выше, присутствие азота в сталях, стабилизированных титаном или ниобием, может ухудшать их стойкость против МКК. Связывая титан и ниобий в малорастворимые нитриды, азот тем самым выводит эти элементы из взаимодействия с углеродом, что требует введения избыточного количества титана или ниобия. Количество связанного в нитриды титана определяется соотношением Ti/N = 3,3, а ниобия — Nb/N 6,64.  [c.55]

Такие металлы, как титан, тантал, молибден, цирконий,, ниобий и другие, а также ряд нитридов, карбидов, силицидов тугоплавких металлов нашли применение в некоторых отраслях промышленности. Эти металлы и их сплавы обладают ценными физическими и химическими свойствами и значительной коррозионной устойчивостью в сильноагрессивных средах, которая в некоторых случаях превосходит устойчивость нержавеющих сталей, платины, золота и серебра.  [c.149]

Соединения тугоплавких металлов наряду с высокой температурой плавления и твердостью обладают коррозионной устойчивостью во многих агрессивных средах. В качестве коррози-онно-устойчивых материалов и покрытий используются соединения титана, тантала, ниобия, а также карбиды, силициды, бориды и нитриды. Карбид титана устойчив в концентрированной соляной кислоте, а карбиды бора и кремния отличаются высокой коррозионной устойчивостью во многих средах.  [c.185]

Методом порошковой металлургии изготовляют различные детали из тугоплавких металлов вольфрама, тантала, ниобия и молибдена с температурой плавления выше 2000°. Что касается изделий из тугоплавких карбидов, боридов, нитридов, то они могут быть получены только методами порошковой металлургии. Температура спекания изделий из тугоплавких карбидов титана, циркония, гафния превышает 2000°, достигая 2500—2700° для карбидов нио бия и тантала.  [c.74]

Бориды металлов IV, V, VI групп периодической системы обладают меньшей упругостью паров по сравнению с силицидами и нитридами этих металлов, за исключением борида хрома, у которого скорость испарения выше, чем у других боридов. Низкая летучесть борида ниобия позволяет применять его в качестве нагревательных элементов электропечей.  [c.416]


В работе исследовались условия нанесения на графит покрытий из карбидов титана, циркония, ниобия, карбонитрида бора и нитрида алюминия.  [c.55]

Многие из этих металлов (титан, ниобий, тантал, хром) образуют защитные слои из окислов или окислов и нитридов и при низких температурах проявляют высокую пассивность, но в области высоких температур пассивность утрачивается, и они активно реагируют с окружающей средой.  [c.11]

Влияние размера наночастиц на параметр решетки отмечено не только для металлов, но и для соединений. Уменьшение периода решетки ультрадисперсных нитридов титана, циркония и ниобия в зависимости от размера частиц описано в [49—51, 253]. Порошки нитридов получены плазмохимическим методом. В [253] для ультрадисперсного порошка нитрида титана приведена зависимость периода решетки а от величины удельной поверхности S,p порошка а(нм) = 0,42413 - 0,384-10 (при 5,,,от 4-10 до МО м /кг). Вместе с тем в установленной в [253] зависимости периода решетки от дисперсности частиц нитрида титана не учитывается, что порошки разной дисперсности имели различный состав чем мельче был порошок, тем меньше было в нем содержание азота. К сожалению, авторы [253] не попытались разде-. лить влияние состава нитрида титана и размера его частиц на период решетки. Сокращение параметра решетки кубического нитрида циркония, объясняемое уменьшением размера частиц порошка [50], происходило при одновременном значительном изменении состава нитрида. Для нитрида ниобия с размером частиц около 40 нм также обнаружено значительное уменьшение периода решетки — от 0,4395 нм для массивного образца до 0,4382 нм для порошка [51].  [c.74]

Вопрос удаления азота требует некоторых пояснений. В большинстве жаропрочных сталей и сплавов азот находится в виде более или менее устойчивых нитридов. В зависимости от свойств нитрида — температур плавления и диссоциации, плотности — находится их способность всплывать в металлической ванне. Если азот связан в устойчивые нитриды ниобия, циркония, титана, то не приходится рассчитывать на снижение содержания его в металле в процессе переплава, как электрошлакового, так и. ...... .... ".  [c.411]

Отмечается большая разница во влиянии азота на свойства низколегированных сталей и высоколегированных нержавеющих и жаростойких. В высоколегированных сталях он обладает значительной растворимостью и образует стойкие нитриды, особенно в присутствии титана, ниобия и некоторых других элементов. Растворимость азота в расплавленных железохромоникелевых сплавах зависит от содержания хрома и никеля, что хорошо видно из данных, приведенных на рис. 111. Растворимость азота в расплавленной стали определяли при 1600° С. Как видно, хром способствует повышению растворимости азота в его сплавах с железом, 192  [c.192]

Тантал более склонен к образованию карбидов, чем нитридов, в то время как ниобий в равной степени образует нитриды и карбиды. Поэтому в присутствии ниобия или тантала отдельно иди совместно (—1—1,5%) хорошие результаты получаются при сварке с применением электродов из того же материала, но с обмазкой.  [c.328]

Избыток ниобия, не связанного в карбиды или нитриды, в хромоникелевых сталях типа 18-8 нежелателен, так как он оказывает вредное влияние на механические и технологические свойства сталей [243]. Например, стали 18-12 с ниобием при отношении Nb С, равном 12, очень плохо штампуются вследствие образования феррита. Наличие феррита также вредно сказывается на прошивке трубной заготовки.  [c.347]

Сталь относится к группе аустенитных, имеет повышенную прочность и несколько меньшую пластичность, что связано с образованием карбидов ниобия и нитридов. Несмотря на присадку ниобия, сталь не имеет полного иммунитета против межкристаллитной коррозии (см. часть пятую).  [c.448]

Титан или ниобий, вводимые в сталь, частично переводят углерод и азот в более стойкие и труднорастворимые соединения (карбиды и нитриды), а поэтому должны, если не полностью, то частично, уменьшать склонность сталей к межкристаллитной коррозии.  [c.510]

Ниобий, в отличие от титана, не образует нерастворимых нитридов [538]. Нитриды ниобия имеют очень высокую температуру плавления и диссоциируют при 2050° С. В стали нитриды растворяются прд температурах ниже температур плавления, т. е. ниже 1500° С, и поэтому их считают растворимыми. Азот, входящий в состав стали и находящийся в ней в количестве выше предела растворимости, т. е. более 0,022%, связывает часть ниобия, образуя стойкие нитриды ниобия.  [c.561]


Дисперсное упрочнение ниобия нитридом циркония / О. И. Баньковский,  [c.231]

Сущность этого процесса состоит в следующем низколегированную сталь, содержащую (оптимальный состав) небольшое количество нитридов ниобия н ван< дия (типичный состав 0,1% С, 0,5% Ми, 0,05"/о V, 0,05% Nb, 0,01% N) нагревают иод ирокатку до высоких температур, ирн этом нитриды ванадия переходят в твердый раствор, а нитриды ниобия не растворяются и обеспечивают сохранение мелкого зерна. Прокатку заканчивают при низкой температуре (800°С), что позволяет получить мелкое зерно. После фазового превращения по перлитному типу (вблизи температуры 650°С) из феррита выделяются нитриды ванадия, упрочняя сталь.  [c.402]

В работах [328, 330, 332, 339, 3551 было показано, что описание-кривой нагружения ОЦК-поликристаллов уравнением параболического типа (3.57) значительно расширяет возможности экспериментального изучения процесса деформационного упрочнения. Обобщением-результатов этих работ, а также ряда литературных данных [9, 289,, 290] является общая схема деформационного упрочнения поликристал-лических ОЦК-металлов и сплавов [47, 48] (рис. 3.33), которая отражает сложный многостадийный характер процесса, обусловленный поэтапной перестройкой дислокационной структуры при деформации. Считается, что перестройка структуры (от относительно однородного распределения дислокаций через сплетения и клубки к дислокационной ячеистой структуре) вызывает соответствующее изменение внутренних напряжений [2961, следовательно, и параметров процесса деформационного упрочнения. Данная схема основывается на анализе и обобщении результатов механических испытаний и структурных исследований, проведенных на десяти сплавах ОЦК-металлов [47, 481, которые различались по величине модуля упругости, энергии дефекта упаковки, наличию дисперсных упрочняющих фаз, уровню примесных элементов и размеру зерна (в пределах одного сплава). В частности, были исследованы при испытаниях на растяжение в интервале температур 0,08—0,5Гпл однофазные и дисперсноупрочненные сплавы-на основе железа (армко, сталь 45, Ре + 3,2 % 81), хрома, молибдена (МЧВП с размером зерна 100 и 40 мкм, Мо Н- 4,5 % (об.) Т1М, ЦМ-10-и ванадия (технически чистый ванадий), а также сплавы ванадия и ниобия с нитридами соответственно титана и циркония [95].  [c.153]

Покрытия из металлов п сплавов используют в качестве антикоррозионных (хром, никель, нихром), жаростойких (ниобий, мо либден), жароэрозионностойких (вольфрам). Хромоникелевые само-флюсующиеся сплавы обладают износостойкостью, эрозионной и коррозионной стойкостью, стойкостью к окислению при высокой температуре. Оксиды (оксид алминия, оксид хрома, диоксиды циркония или титана) применяют как теплозащитные покрытия, обладающие высокой жаро- и коррозионной стойкостью, твердостью. Бориды различных металлов имеют высокую твердость и хорошую жаростойкость, силициды — высокую термо- и жаростойкость. Карбиды металлов в большинстве случаев характеризуются высокой твердостью, износо- и жаростойкостью нитриды титана, циркония, гафния — высокой твердостью, износо- и термостойкостью, устойчивостью к коррозии.  [c.139]

Описаны f28l методы порошковой металлургии, применимые для проияводства жаростойких сплавов с твердеющей основой, содержащих 5—30"ij хрома, до 25°п железа и до 90% никеля и (или) до 70 о кобальта. Сплав упрочняется путем диспергирования в матрице фазы, препятствующей сдвигу (и возврату) и состоящей из карбидов, боридов, сши-щидов н нитридов титана, циркония, ниобия, тантала и ванадия. Сплав имеет высокое сопротивление ползучести в интервале 800—1050.  [c.314]

Как следует из ранее сделанных выводов, а также судя по положению ниобия в перио.чической таблице, его нитриды меиее устойчивы, чем нит-ридь1 тугоплавких элементов IV группы. Однако сушествование мононитрида ииобия NbN установлено вполне определенно, в то время как соединение NbjNs охарактеризовано недостаточно. Нитриды образуются при непосредственном синтезе (выше 600°), а также при взаимодействии окиси или галогенида ниобия с азотом в присутствии водорода. На воздухе нитриды легко окисляются с выделением азота. Большой интерес в течение некоторого времени представляла сверхпроводимость мононитрида NbN при 15.2 [34, 68, 69] — третьей ия наиболее высоких температур, известных для перехода вещества в сверхпроводящее состояние, так как в связи с этим он может найти применение как конструкционный материал для болометров [5, 47, 48, 89],  [c.451]

Вольфрам представляет большой интерес для техники, как основа конструкционных материалов, работающих при температурах выше 2273К, Дисперсное упрочнение южет быть осуществлено карбидами, нитридами и оксидами. Присутствие дисперсных частиц стабилизирует структуру, повышает температуру начала рекристаллизации вольфрама и обеспечивает высокие механические свойства. Наиболее эффективно повышают прочностные свойства вольфрама дисперсные карбидьг Упрочнение карбидами применяют в сочетании с твердорастворным упрочнением за счет легирования рением, ниобием, танталом, молибденом.  [c.122]

В стали типа Х18Н9 основным видом включений яв- ляются оксиды и силикаты, а также глобули и мелкие сульфидные включения (0,5 балла). В нержавеющей стали с титаном и ниобием основную массу включений составляют нитриды и карбонитриды титана и ниобия. Изменение общего количества и видов включений по ходу плавки стали Х18Н10Т, выплавленной по типовой технологии методом переплава отходов, приведено по данным [59] на рис. 23. Эти данные показывают, что кислородные включения по ходу плавки претерпевают  [c.91]

При отсутствии сильных нитридообразователей и тщательном отборе сырьевых материалов для основной шихты удаление азота происходит на стадии интенсивного "углеродного кипения" затем интенсивность выхода азота снижается и достигает некоторого установившегося уровня. Растворимость азота в расплавах невелика, но суперсплавы часто содержат хром, алюминий, титан, ниобий и ванадий, эти элементы образуют стойкие нитриды и очень затрудняют удаление азота путем вакуумирования. Содержание азота в суперсплавах поддерживают на уровне, меньшем 0,009 % (по массе). Дальнейшее снижение этого уровня требует более длительных обработок, и это уже непрактично.  [c.130]


Главной упрочняющей фазой в жаропрочных сплавах на никелевой основе является у -фаза П1з(Т1, А1) в некоторых сплавах, легированных ниобием, такой является фаза типа Ы1з(МЬ, А1, Ti). Такие фазы, как бориды, нитриды, карбиды, вызьшают незначительное дополнительное упрочнение при низких температурах из-за их небольшой объемной доли. Однако эти фазы могут существенно изменять скорость ползучести и срок службы изделий. Прочность никелевых сплавов, упрочняемых у -фазой, зависит от следующих факторов объемной доли у -фазы радиуса частиц у -фазы прочности частиц у -фазы.  [c.207]

Хорошее сочетание свойств имеют стали, содержащие 0,4. .. 0,6 % Мо и 0,002. .. 0,006 % В с добавкой других легирующих элементов, что обеспечивает получение стабильной бейнитной или мартенситной структуры. Применяются также безникелевые стали, содержащие 0,15. .. 0,3 % Мо и 0,002. .. 0,006 % В (12Г2СМФАЮ), которые уступают сталям типа 14Х2ГМРБ по хладостойкости, и стали с небольшим количеством азота (0,02. .. 0,03 %) и нитридообразующих элементов - алюминия, ванадия, ниобия (12ГН2МФАЮ). Наличие мелкодисперсных нитридов в стали способствует уменьшению их склонности к росту аустенитного зерна при сварке.  [c.291]

Чтобы ограничить воздействие окружающей атмосферы на металл шва, сварку надлежит производить короткой дугой на малых токах. Это обстоятельство обусловливает необходимость применения тонкой проволоки диаметром 0,7—1,2 мм. Наибольшие трудности при сварке незащищенной дугой создает повышенная склонность сварных швов к азотной пористости. С окислением легирующих элементов бороться проще, чем с пористостью. Угар элементов можно компенсировать, предусмотрев либо повышенное содержание их в проволоке, либо легирование ее легкоокисляющимися элементами, например алюминием для защиты титана. При сварке на воздухе азотная пористость швов более вероятна, чем при сварке в атмосфере чистого азота ( 4 гл. П). Чтобы преодолеть пористость, нужно легировать шов элементами, повышающими растворимость азота в аустените. К числу таких элементов относится прежде всего марганец. Полезным может оказаться и другой путь помимо увеличения растворимости азота связывание его в устойчивые нитриды. Здесь могут быть эффективными ниобий, титан, цирконий. Наконец, обнаружено положительное действие редкоземельных металлов, в первую очередь церия. В этой области предстоит еще сделать многое. Тем не менее, уже сейчас, особенно применительно к жаростойким сталям, таким, например, как сталь типа 25-20 (ЭИ417), а также сталь 1Х18Н10Т, можно в ряде случаев идти на монтажную сварку незащищенной дугой.  [c.348]


Смотреть страницы где упоминается термин Ниобий нитрид : [c.220]    [c.144]    [c.208]    [c.88]    [c.51]    [c.32]    [c.222]    [c.152]    [c.23]    [c.199]    [c.100]    [c.523]    [c.204]    [c.339]    [c.159]    [c.245]    [c.411]    [c.413]    [c.328]    [c.201]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.322 ]



ПОИСК



Дисперсионное упрочнение сплавов ниобия тугоплавкими карбидами, нитридами и окислами

Ниобий

Ниобит 558, XIV

Нитриды



© 2025 Mash-xxl.info Реклама на сайте