Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория явления Комптона

Квантовая теория явления Комптона. Явление Комптона было объяснено на основе квантовой теории света. Совпадение результатов квантовой теории с опытными данными говорит в пользу фотонной теории света. Следовательно, явление Комптона является одним из экспериментальных фактов, подтверждающих квантовую теорию света. Эффект Комптона ценен еще и тем, что им проверялся в процессах с участием фотонов не только закон сохранения энергии (как это было при фотоэффекте), но также и закон сохранения импульса.  [c.347]


Кратко изложим квантовую теорию явления Комптона.  [c.347]

Как уже указано, можно рассчитать взаимные направления электронов и рассеянных лучей, необходимые для классического объяснения явления Комптона при помощи эффекта Допплера. С другой стороны, можно вычислить это распределение направлений электронов и фотонов по теории упругих столкновений. Э-ги две точки зрения приводят к разным результатам. Упомянутые опыты свидетельствуют в пользу квантовой теории явления, так что объяснение его с помощью аспекта Допплера следует признать неудовлетворительным. Таким образом, явление Комптона, подобно основным законам фотоэффекта, говорит в пользу представления о фотонах.  [c.656]

К числу таких явлений можно отнести эффект Допплера, который был впервые объяснен на основе волновой теории и с этой точки зрения уже был рассмотрен в гл. XXI. Эффект Допплера — типичное волновое явление, и истолкование его на основе теории фотонов представляется на первый взгляд затруднительным. Однако удается показать возможность такой интерпретации путем рассуждений, очень близких к рассуждениям, служащим для объяснения явления Комптона. Для простоты ограничимся столь малыми скоростями движения источника и, при которых можно пренебречь членами второго порядка относительно и/с. Тогда по принципу Допплера изменение частоты излучаемого источником света выразится формулой  [c.657]

Гипотеза фотонов позволила прежде всего объяснить загадочные закономерности в явлениях фотоэффекта, совершенно непонятные с точки зрения классической волновой теории света. Существование импульса у фотонов было доказано открытием в 1923 г. аффекта Комптона — изменения длины волны при рассеянии рентгеновского излучения. Гипотеза световых квантов позволила понять химические действия света и их закономерности. Квантовый характер излучения и поглощения света был использован Бором (1885—1962) для объяснения спектральных закономерностей.  [c.30]

По теории эффекта Комптона одновременно с рассеянием кванта должно иметь место и отбрасывание электрона со скоростью v (электрон отдачи). Действительно такие электроны удалось наблюдать по методу камеры Вильсона, так как скорость этих электронов достаточна, чтобы вызвать ионизацию воздуха. Комптон и Саймон (1925 г.), пользуясь этим методом, изучили распределение направлений первичных и рассеянных квантов и электронов отдачи. Результаты оказались в полном согласии с приведенной теорией столкновения, расхождение между опытным и теоретическим определением направления полета электрона лежало в пределах О—20 , что следует считать весьма удовлетворительным для этого трудного опыта. Описанный опыт, так же как и специальный опыт Боте (1925 г.) показали, что акт рассеяния и акт электронной отдачи локализованы и в пространстве и во времени, как два совпадающих акта, что заставляет признать описываемый процесс элементарным, а не статистическим. На основании этих уже опытных данных следует считать неудовлетворительным классическое истолкование изменения длины волны при рассеянии, как результат явления Допплера, т. е. рассеяние электронами, приведенными в достаточно быстрое движение. Наоборот, с данными опыта вполне согласуется развитая квантовой механикой теория рассеяния рентгеновских лучей свободными электронами. Она не только подтверждает выводы, полученные при помощи упрощенного рассмотрения явлений на основании гипотезы световых квантов, но и приводит к количественным заключениям относительно интенсивности рассеянного света (Дирак, 1926 г., и Клейн и Ниши-на, 1929 г., применившие новую релятивистскую квантовую механику Дирака). Установленная этими теориями зависимость коэфициента рассеяния от направления наблюдения и длины волны хорошо подтверждается измерениями в весьма широком HHTepBajfe частот, вплоть до очень жестких у-лучей. В области наиболее коротких волн (см. Носмические лучи) формула Дирака-Клейн—Нишина дает пока единственно применимый, хотя и не вполне надежный, метод определения длины волны (Милликен, 1927 г.).  [c.71]


Из других проблем, которые легко можно рассмотреть с помо1цью теории, упомянем опыт Гейгера-Боте, обнаруживший в явлении Комптона связь. между лшмен-том времени появления рассеяния электрона и момеито.м времени появления рассеянного при этом процессе кванта. Из теории сразу следует, что эти моменты времени должны в пределах точности геометрической оптики и ширины определяющего начальное состояние волнового пакета находиться в определённых границах ).  [c.325]

При экспериментальном исследовании этого явления, впервые пpoвeдe п oм Комптоном (1922 — 1923), было установлено, что наряду с закономерностями, хорошо объясняемыми электромагнитной теорией (поляризация рассеянного излучения и его интенсивность), наблюдаются эффекты, истолкование которых в рамках этой теории невозможно. Так, например, было обнаружено появление спутника у основной линии, совпадающей по длине волны с облучающими 8.26. Эффект Компто-объект характеристическими лучами. Ока- на на Х-линии молиб-залось, что смещение ДХ этого спутника не  [c.447]

Относящиеся к квантовой оптике вопросы (фотонные представления явления, в которых проявляются корпускулярные свойства излучения) освещаются в той или иной степенью полноты во всех современных учебных пособиях по физике. В вузовских курсах физики рассматриваются закономерности теплового излучения (от закона Кирхгофа до формулы Планка), сообщаются сведения о фотоэффекте, эффекте Комптона, фотохимическом действии света, дается объяснение испускания и поглощения света атомами на основе теории Бора. При более глубоком изучении физики студентов знакомят также с люминесцентными явлениями, эффектом Л1ёссбауэра, многофотонными процессами, дают им некоторые сведения о квазичастицах в твердых телах. При этом авторы одних учебников пользуются термином квантовая оптика , тогда как в других учебниках этот термин не применяется, а соответствующие вопросы собраны в главах, называемых Тепловое излучение , Световые кванты , Действие света и т. п. Дело в том, что в использовании термина квантовая оптика нет четкой договоренности. Согласно точке зрения, принятой в современной научной литературе, все отмечавшиеся выше вопросы — это еще не сама квантовая  [c.4]

Первоначальная теория дуги связывала прохождение тока в разрядном промежутке со способностью катода эмиттировать электроны под влиянием высокой температуры, источником которой могут явиться искусственный подогрев катода или бомбардировка его положительными ионами, возникающими в результате ионизации газа. Термоэлектронная теория оказалась в состоянии объяснить все наблюдавшиеся явления дугового разряда, пока ее применяли к атмосферной дуге с угольными электродами, примеры чего можно найти в работе Комптона [Л. 142], а также в прежних обзорах [Л. 143]. Более того, первое время казалось возможным распространить теорию на металлические дуги даже того типа, при котором вся масса металла катода остается относительно холодной. Для этого достаточно было допустить существование высоких температур в микрообъемах металла, расположенных вблизи поверхности в области локализации разряда. Некоторые наблюдения, однако, ставили под сомнение возможность применения термоэлектронной теории к металлическим дугам. Среди них особенно важную роль в свое время сыграли опыты Штольта [Л. 144], показавшего впервые, что катодное пятно способно перемещаться по медному катоду с большой скоростью, при которой казалось немыслимым сильное нагревание меди даже на малых участках поверхности, занимаемых пятном. В настоящее время, когда стали известны почти фантастические значения плотности тока в области катодного пятна, такого рода доводы потеряли свою убедительность. Гораздо более серьезное возражение универсальности термоэлектронной теории выдвинул Слепян [Л. 145], указав, что большинство металлов не могут быть нагреты до температур, достаточных для заметной эмиссии. Это особенно очевидно по отношению к таким металлам, как ртуть, медь и серебро. В поисках выхода из создавшегося затруднения Гюнтершульце [Л. 7] предположил, что температура кипения металла в области катодного пятна настолько резко повышается под влиянием увеличенного местного давления пара, что металл способен нагреваться до температур, достаточных для электрон--ной эмиссии. Подтверждение этой догадки Гюнтершульце вн-54  [c.54]


Обратный Комптона эффект. Если эл-ны, на к-рых упруго рассеивается эл.-магн. излучение, релятивистские, то энергия (и импульс) фотонов будет увеличиваться за счёт энергии (и импульса) эл-нов, т. е. длина волны при рассеянии будет уменьшаться. Это явление наз. обратным К. э. Его часто привлекают для объяснения механизма рентг. излучения косм, источников, образования рентг. компоненты фонового галактич. излучения, трансформации плазм, волн в эл.-магн. волны высокой частоты. фБ о р н М., Атомная физика, пер. с англ., 3 изд., М., 1970 Фейнман Р., Теория фундаментальных процессов, пер. с англ., М., 1978. В. П. Павлов.  [c.307]

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ, лежащее в основе квант, теории представление о том, что в поведении микрообъектов проявляются как корпускулярные, так и волн, черты. По представлениям классич. (неквантовой) физики, движение ч-ц и распространение волн — принципиально разные физ. процессы. Однако опыты по вырыванию светом эл-нов с поверхности металлов фотоэффект), изучение рассеяния света на эл-нах Комптона эффект) и результаты ряда др. экспериментов убедительно показали, что свет — объект, имеющий, согласно классич. теории, волн, природу, обнаруживает сходство с потоком ч-ц — фотонов, обладающих энергией ё и импульсом р, к-рые связаны с частотой v и длиной волны л света соотношениями S=hv, p hlX. С др. стороны, пучок эл-нов, падающих на кристалл, даёт дифракц. картину, к-рую можно объяснить лишь на основе волн, представлений со свободно движущимся эл-ном сопоставляется т. н. волна де Бройля, длина волны и частота к-рой связаны соотношениями X=h p, = lh, где р — импульс, ё — энергия эл-на. Позже было установлено, что это явление свойственно вообще всем микрочастицам (см. Дифракция микрочастиц). Такой дуализм корпускулярных и волн, св-в не может быть понят в рамках классич. физики так, возникновение дифракц. картины при рассеянии ч-ц несовместимо с представлением о движении их по траекториям. Естеств. истолкование К.-в. д. получил в квантовой механике.  [c.312]


Смотреть страницы где упоминается термин Теория явления Комптона : [c.656]    [c.192]    [c.247]    [c.644]    [c.422]    [c.70]    [c.486]    [c.172]    [c.217]    [c.493]    [c.876]   
Смотреть главы в:

Оптика  -> Теория явления Комптона



ПОИСК



Комптон

Явление

Явление Комптона



© 2025 Mash-xxl.info Реклама на сайте