Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Адсорбция кислорода на поверхности металла и образование оксида

С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.  [c.81]


При соприкосновении двух поверхностей контакт происходит не по всей площади, а лишь на относительно небольшом числе выступов шероховатостей. В результате скольжения поверхностей друг относительно друга неровности одной поверхности стирают неровности противоположной и образуется гладкий след. Если эта поверхность металлическая, то здесь сразу же адсорбируется газ или происходит ее окисление. Последующие перемещения шероховатостей стирают пленку оксида они могут и механически активировать реакцию адсорбции кислорода на металле и образования оксида, который, в свою очередь, также стирается (рис. 7.20). Это химическая составляющая разрушения при фреттинге. Кроме того, шероховатости вызывают определенный износ, удаляя частички металла. Это механическая составляющая. Оторвавшиеся частицы металла превращаются в оксид, и поверхность металла через некоторое время начинает истираться о движущиеся частицы в большей степени, чем о противоположную поверхность (в результате низкое вначале электрическое сопротивление между поверхностями становится высоким).  [c.165]

Мы можем также принять во внимание, что окислению предшествует быстрая физическая адсорбция кислорода, вслед за которой с меньшей скоростью идет хемосорбция атомов кислорода. Хемосорбированный кислород в свою очередь взаимодействует с металлом с образованием оксида металла. Эта реакция механически активируется при движении шероховатостей по поверхности металла. Количество оксида, которое образуется в результате такого процесса, лимитируется хемосорбцией. Скорость хемосорбции подчиняется уравнению, идентичному по форме уравнению (27) [6]. Следовательно, какой бы процесс ни преобладал, вид конечного выражения остается по существу одинаковым.  [c.413]

Исследования, проведенные на никеле, кобальте, меди и других металлах [41], показывают, что дифференциальные теплоты адсорбции уменьшаются с увеличением степени заполнения поверхности кислородом (рис. 10). Возникновение площадок связывается с формированием оксидных слоев и с теплотами образования объемных оксидов. Показано, что имеется соответствие между теплотами адсорбции кислорода и теплотами образования индивидуальных оксидов. Согласно общему правилу, сформулированному К. Танаку и К. Тамару,, теплоты хемосорбции кислорода на различных металлах могут быть определены из эмпирического уравнения  [c.36]

До настоящего времени механизм и кинетика роста зародышей оксида на поверхности металла относительно мало изучены. Первоначальными причинами образования зародышей считаются дислокации, примеси и другие поверхностные дефекты. Часто такое расположение зародышей оксида объясняется адсорбцией кислорода на поверхности как фактора, лимитирующего скорость окисления. Адсорбированный кислород, диффундируя на поверхность к растущим зародышам оксида, снижает одновременно концентрацию кислорода в зоне вокруг каждого зародыша и тем самым препятствует возникновению новых. Размеры таких зон и плотность распределения зародышей зависят от запаса адсорбированного кислорода и скорости поверхностной миграции.  [c.47]


Взаимодействие кислорода с поверхностью металла характеризуется несколькими стадиями. Установлен следующий ряд элементарных актов окисления образование свежей поверхности металла адсорбция молекулярного кислорода на поверхности металла с последующей диссоциацией на атомы и-Jix хемосорбция возникновение зародышей оксидов на локальных участках поверхности формирование и рост сплошной пленки оксида.  [c.34]

Для большинства металлов при взаимодействии с кислородом воздуха или с другими окислителями характерно образование пленки оксида или другого соединения. Первой стадией такого взаимодействия является адсорбция окислителя на поверхности металла  [c.12]

Адсорбция кислорода на поверхности металла и образование оксида  [c.40]

Таким образом, в зависимости от металла и условий пассивации, механизм пассивации может сильно изменяться от адсорбции кислорода на отдельных точках поверхности через образование сплошных хемосорбционных слоев кислорода и их утолщения до защитных барьерных слоев, а в некоторых случаях процесс может протекать и с образованием более утолщенных слоев оксида. При этом торможение анодного процесса мол ет осуществляться как вследствие изменения скачка потенциала в двойном слое или блокирования активных точек металла, так и в результате униполярной проводимости возникающих хемосорбционных или барьерных слоев оксидов. По-видимому, только для очень толстых пленок следует предусматривать возможность кроющего (изолирующего) торможения. Наиболее совершенными защитными пленками являются те, которые обеспечивают достаточно полное торможение анодного процесса ионизации металла уже при образовании хемосорбционного слоя.  [c.54]

Образование защитной (сплошной, непористой) пленки на металлах состоит из нескольких стадий а) переход ионов металла и электронов из металлической фазы в оксид б) диффузия их в слое оксида в) подход кислорода к поверхности раздела оксидная пленка — газ и адсорбция его г) ионизация адсорбированного кислорода и перемещение его ионов в слое оксида д) взаимодействие ионов кислорода с металлом с образованием оксида (рис. 9).  [c.30]

Взаимодействие кислорода с чистой поверхностью металла протекает в три этапа I) адсорбция кислорода, 2) иуклеация, т. е. образование зародышей, 3) рост сплошной оксидной пленки. На первых стадиях адсорбции пленка состоит из атомов кислорода, так как свободная энергия адсорбции атомов кислорода превышает свободную энергию диссоциации его молекул. Методом дифракции медленных электронов удалось установить, что атомы некоторых металлов входят в состав адсорбционной пленки и образуют относительно стабильную двухмерную структуру из ионов кислорода (отрицательно заряженных) и металла (положительно заряженных). Как уже говорилось в отношении пассивирующей пленки (разд. 5.5), адсорбционная пленка, составляющая доли монослоя, термодинамически более стабильна, чем оксид металла. На никеле, например, она сохраняется вплоть до точки плавления никеля [1 ], тогда как NiO разрушается вследствие растворения кислорода в металле . Дальнейшая выдержка при низком давлении кислорода ведет к адсорбции на металле молекул Оа, проникающих сквозь первичный адсорбционный слой. Так как второй слой кислорода связан менее прочно, чем первый, он адсорбируется не диссоциируя. Возникающая в результате структура более стабильна на переходных, чем на непереходных металлах [2]. Любые дополнительные слои адсорбированного кислорода связаны еще слабее, и наружные слои становятся подвижными при повышенных температурах, о чем свидетельствуют рентгенограммы, отвечающие аморфной структуре. Вероятно, ионы металла входят в многослойную адсорбционную пленку в нестехиометрических количествах и к тому же относительно подвижны. Например, обнаружено, что скорость поверхностной диффузии атомов серебра и меди выше в присутствии адсорбированного кислорода, чем в его отсутствие [3].  [c.189]

Исследования структуры физически сорбированных слоев влаги на оксидах металлов показали, что в процессе адсорбции имеет место образование роев молекул. Для образца, содержащего количество воды, примерно равное монослою (по БЭТ), адсорбированная фаза представляет собой островки толщиной 2—3 молекулы воды. Только при наличии трех монослоев (по БЭТ) предполагается слияние островков, растущих тангенциально поверхности. В этом случае образование по-лимолекулярных слоев влаги аналогично явлению возникновения зародышей оксида при окислении чистых поверхностей металла в атмосфере кислорода.  [c.51]



Смотреть страницы где упоминается термин Адсорбция кислорода на поверхности металла и образование оксида : [c.51]    [c.394]   
Смотреть главы в:

Коррозия и защита от коррозии  -> Адсорбция кислорода на поверхности металла и образование оксида



ПОИСК



Адсорбция

Адсорбция кислорода

Адсорбция кислорода на металлах

Адсорбция на металлах

Кислород

Кислород в металлах

Образование поверхностей

Оксиды

Оксиды металлов

Поверхность металла



© 2025 Mash-xxl.info Реклама на сайте