Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел уплотнения

Подобное сжатие плотной фазы является довольно естественным пределом уплотнения под действием расширяющихся пузырей — агрегаты доводятся до постоянного соприкосновения соседних частиц. Долей частиц, сыплющихся в каждый данный момент сквозь крупные пузыри, очевидно, можно пренебречь.  [c.88]

Поскольку величина с равна тому минимальному среднему давлению, при котором начинается уплотнение, то ее естественно назвать пределом уплотнения.  [c.21]

О пределах текучести. Пределы текучести р , и предел уплотнения с являются функциями плотности, упрочнения и других параметров состояния.  [c.35]


Аналитические выражения для предела уплотнения с неизвестны. Однако в работах [31, 39] указывается, что по мере уплотнения эта величина стремится к нулю. В дальнейшем везде принимается с=0.  [c.36]

При расчетах реальных процессов желательно, чтобы зависимости пределов текучести и предела уплотнения от пористости, параметра упрочнения и, если необходимо, от температуры были определены экспериментально.  [c.37]

Учитывая, что предел уплотнения с, по-видимому, имеет порядок 0,5—0,6 А , можно сделать вывод, что скорость уплотнения становится очень малой уже при давлении порядка предела текучести на сдвиг твердой фазы.  [c.97]

Из (4.4) следует, что среднее напряжение во всех частицах цилиндра увеличивается с ростом i 2- Во внешней зоне (i 2>/ >i ) происходит разуплотнение. Однако и во внутренней зоне (R >r>Ri) в зависимости от величины с может происходить разуплотнение (с — предел уплотнения).  [c.102]

Обработка гребенчатого уплотнения (вид 8) упрощается при выносе гребешков за пределы корпуса уплотнения (вид 9).  [c.122]

В конструкции уплотнительного устройства (рис. 13.1, б) применены два резьбовых соединения — накидной гайки 3 со штуцером 4 и штуцера 4 с корпусом 6. Герметичное уплотнение между штоком 1 и штуцером 4 создано сальниковым уплотнением, состоящим из уплотнительной набивки 7, зажимаемой втулкой 2 при завинчивании гайки 3. Уплотнительную набивку выполняют из шнура, изготовленного из пряжи и пропитанного густой смазкой или графитовым порошком, или в виде колец из резины, тефлона. Объем набивки выполняют таким, чтобы между торцами втулки 2 и штуцера 4 после сборки нового соединения оставался зазор, в пределах которого можно перемещать втулку 2 во время эксплуатации для компенсации износа набивочного материала, подтягивая гайку 3. Торцевое уплотнение между штуцером 4 и корпусом 6 обеспечивает прокладка 5 из податливого материала паронита, резины и т. п.  [c.193]

Существенной особенностью ударной адиабаты является то, что при неограниченном возрастании давления в скачке уплотнения (pi увеличение плотности имеет определенный предел, который как это видно из уравнения (18), равен  [c.122]

Диапазон изменения угла а для косого скачка уплотнения определяется, таким образом, следующими пределами  [c.133]

Наиболее разработаны методы количественной оценки термодинамических параметров по данным оптических измерений для двумерных и осесимметричных потоков, например для обтекания тел клиновидной и сферической форм, в которых по результатам расшифровки оптических картин расчетным путем можно получить распределение плотности внутри изучаемого объекта. В этом случае плотность или показатель преломления изменяется (вне зоны скачков уплотнения) непрерывно и монотонно в пределах заданной области.  [c.216]


Скачки уплотнения возникают при торможении сверхзвуковых потоков в газе какими-либо преградами. Возмущения сжатия, вызываемые отдельными точками преграды, распространяясь со скоростью звука, в сверхзвуковом потоке не могут выходить за пределы соответствующих конических поверхностей, образованных волнами Маха (см. рис. 4.2). Поэтому в ограниченном пространстве перед  [c.107]

Рассмотрим картину течения перед затупленным телом с центральной иглой. Если длина такой иглы не превышает расстояния до криволинейного отошедшего скачка уплотнения (рис. 6.1.1,а), то ее влияние распространяется лишь на течение за этим скачком и оказывается несущественным. Выдвижение острия иглы 9 за пределы криволинейного скачка уплотнения (рис. 6.1.1,6) приводит к перестройке структуры возмущенного потока, которая характеризуется новой системой скачков уплотнения. Это обусловлено отрывом потока от поверхности иглы, который обычно происходит вблизи основания конического острия (излома). Такой отрыв вызывается большим положительным градиентом давления в пограничном слое на поверхности иглы, обусловленным торможением потока перед телом. В результате отрыва возникает застойная зона 1 с возвратным течением. Оторвавшийся пограничный слой смешивается в зоне 2 с внешним возмущенным течением и присоединяется к обтекаемой затупленной поверхности в области 3. Разделяющие линии тока 8 в зоне смешения образуют поверхность, близкую к конической, пересекающуюся с головной частью в точках Л и 5. В месте присоединения сверхзвуковой поток претерпевает поворот, который  [c.383]

В пределах насоса расположены вспомогательные трубопроводы для концевых уплотнений и подшипников. Насос соединяется с редуктором посредством глухой муфты, фиксируемой на валу двумя шпонками. Базовой деталью насо-244  [c.244]

Для таких материалов X зависит не только от свойств материала, но и от степени его уплотненности, что в свою очередь характеризуется плотностью. Кроме того, на теплопроводность указанных материалов большое влияние оказывает влажность, с увеличением которой теплопроводность возрастает. Для влажного материала X выше, чем для сухого материала и воды, взятых в отдельности. Например, для сухого кирпича X— = 0,35 Вт/(м-К), для воды =0,58 Вт/(м-К), а для влажного кирпича Я=1,05 Вт/(м-К). Это объясняется тем, что адсорбированная в капиллярно-пористых телах вода отличается по физическим свойствам от свободной воды. Поэтому по отношению к таким материалам правильнее величину X называть эффективной теплопроводностью. Теплопроводность теплоизоляционных материалов находится в пределах 0,02—3 Вт/(м-К)-  [c.264]

Записывая значение r t, мы не учитывали потерь на трение, чисто газодинамических потерь (из-за наличия скачков уплотнения), потерь тепла в окружающую среду, неполноты сгорания топлива. Поэтому есть теоретический максимально возможный к. п. д. Он соответствует термическому к. п. д. цикла, в котором происходит преобразование тепла, переданного от теплоотдатчика рабочему телу, в работу. Работа в общей формуле = соответствует располагаемой мощности в формулах (13-11) и (13-14), так как термодинамический цикл, как это будет пояснено ниже, начинается в момент входа воздуха в диффузор двигателя и кончается охлаждением продуктов сгорания во внешней среде. Преобразование же части располагаемой работы потока газов, вытекающих из сопла, в полезную энергию движения самолета происходит за пределами цикла и учитывается внешним к. п. д.  [c.419]

Кабельные бумаги для силовых кабелей выпускаются из сульфатной целлюлозы с общим диапазоном толщин от 0,08 до 0,24 мм. По назначению их можно разбить на такие группы для кабелей на рабочее напряжение до 35 кВ однослойная и многослойная для кабелей на 35 кВ и выше обычная, многослойная и уплотненная — с повышенной плотностью для кабелей на ПО кВ и выше обычная и многослойная уплотненная. К бумагам для кабелей на большие напряжения предъявляются повышенные требования. Обычные бумаги имеют плотность в пределах 760— 850 кг/м , уплотненные — в пределах 1090—1100 кг/м и выше. Ниже даны диапазоны некоторых параметров кабельных бумаг разных марок tg б сухой бумаги 0,0027— 0,0023, пропитанной маслом 0,0037—0,0030 удельная проводимость водной вытяжки 0,0065—0,0020 См/м, зольность 1,0—0,3%. Электрическая прочность кабельных бумаг разных толщин и плотностей, пропитанных маслом, лежит в пределах 60—90 МВ/м.  [c.170]


Для уплотнения деталей, выступающих за пределы корпусов, применяют контактные уплотнения в виде сальниковых набивок, изготовляемых из войлока, фетра и других материалов (рис. 4.81). Сальниковую набивку 1 поджимают с помощью нажимной гайки 2.  [c.482]

Радиальный зазор в лабиринтовых уплотнениях принимают в пределах б dy при температурах пара до 400 °С и б =  [c.138]

Износ диафрагменных уплотнений вызывает увеличение усилия, действующего на диск. Неопределенность, возникающая при определении этого усилия, заставляет принимать расчетные удельное давление в упорных подишпниках активных турбин не более 1,8 МПа для реактивных турбин эта величина может быть в пределах 2,5—3,5 МПа. Вместе с тем не рекомендуется допускать удельное давление ниже 0,3 МПа во избежание неустойчивой работы масляного клина и вибрации ротора.  [c.178]

Материал Стойкость к истира-нию Стойкость к действию температуры (минимальной/максимальной) PV, предел уплотнения при вращении, Стойкость к абразивному износу Способность держать давление Коэффи- циент трення Условия применения  [c.407]

Из уравнения (8.37) следует, что при х = 1 ррш- -оо. Конечно, этот вывод физически нереален. Однако если броуновское движение частиц незначительно, то при х = 1 или раньше следует ожидать отложения частиц, когда Up 0. Рассмотрим вначале именно этот случай. Из разд. 5.1 известно, что предел величины ррш определяется максимальной объемной долей твердых частиц фмакс которую можно получить уплотнением дискретной фазы (фмакс = 1 для капель жидкости). Следовательно, пределом величины рри, будет рр = фмаксРр или  [c.357]

В процессе посткристаллизационной трансформации фрактальной структуры сплава в кристаллическую происходит пространственная перестройка и увеличение количества связей между частицами (уплотнение твердой фазы), а также упорядочение связей по 1шинам и энергиям. Несомненно, что такие процессы, происходящие с фрактальной структурой, должны быть связаны с флуктуациями выделяющейся в процессе образования дополнительных связей энергии. Поэтому данный тепловой процесс может рассматриваться как фрактальный шум. Фрактальным шумом называется последовательность случайных значений какой-либо величины, лежащей в определенных пределах.  [c.96]

Первая выражает изменение параметров газа при переходе через скачок, вторая отвечает изоэнтропному непрерывному изменению давления и плотности. На графиках (рис. 11.6) нанесены кривые идеальной адиабаты и ударной адиабаты по уравнению (11.57). Различие этих кривых состоит прежде всего в том, что по идеальной адиабате отношение pj/pi может возрастать безгранично при увеличении pjpi- Согласно ударной адиабате при увеличении pjpi отношение pg/pj асимптотически приближается к пределу, равному k + ) (k — 1). Это значит, что как бы ни возрастало давление при переходе через скачок, уплотнение газа не может превосходить этого предела (для воздуха равного шести).  [c.426]

Дно отстойника устраивают с продольным уклоном к грязевому приямку не менее 0,01 и с поперечным уклоном 0,05 к грязевому лотку (или нескольким лоткам) поэтому зона накопления и уплотнения осадка в начале отстойника имеет большую глубину, чем в конце, причем объем первой трети этой зоны согласно эпюре распределения осадка должен составлять 60. .. 70%. Приведенные выше расчетные формулы применимы в предположении, что скорость одинакова во всех точках поперечного сечения отстойника. Это досгигается устройством дополнительных сопротивлений на пути движения воды в виде дырчатых перегородок или лотков при входе и выходе из отстойника. Хорошим решением следует считать дырчатые перегородки или перегородки с насадками. При этом для предотвращения разрушения хлопьев, скорость движения воды в насадках или в отверстиях перегородок при входе в отстойник принимается в пределах 0,2. .. 0,3 м/с, а в перегородках на выходе — 0,5 м/с. В верхней части перегородок высотой 0,5 м и в нижней части на 0,3. .. 0,5 м выше верхней границы зоны накопления и уплотнения осадка отверстий не устраивают. Уменьшению влияния взвешивающих скоростей способствует разделение отстойника на секции и децентрализованный отбор воды.  [c.232]

Сварное рабочее колесо 29 имеет 16 штампованных из стали 0Х12НД лопастей, приваренных к ступице и ободу, изготовленным из такого же материала. К. п. д., полученный на модели = 0,5 м этого колеса, достигает 93%. Обтекаемый конус 30 сильно развит и хорошо согласован с плавно очерченным проточным трактом. Уплотнение 31 на ободе щелевое с канавками, но без внутреннего кольца, что упрощает конструкцию и ее изготовление, однако при износе требует восстановления канавок непосредственно на ободе рабочего колеса. На ступице 28 рабочего колеса применено уплотнение зубчатой конструкции, имеющее заостренные кромки выступов, образующих малые зазоры, которые при касании легко прирабатываются. Центрируется уплотнение после установки рабочего колеса посредством смещения верхнего кольца зубчатого уплотнения в пределах зазоров в отверстиях для болтов.  [c.35]

Уплотнение состоит из двух поясов U-образных манжет 2, выполненных иа маслостойкой резины и разделенных промежуточным кольцом 3. Манжеты прижаты своими кромками к корпусу 7 и фланцу 6 и установлены таким образом, что наружный пояс самоуплотняется под давлением воды,а внутренний — под давлением масла. Снаружи манжеты подпираются кольцом /, прикрепленным к корпусу винтами, а изнутри поджаты кольцом 4, на которое с постоянной силой давят пружины 5. Кольца / и <3 выполнены из двух частей, что дает возмо шость при установленной лопасти собрать и разобрать уплотнение и заменить манжеты. Стыки манжет сэезают на ус, склеивают при установке на место и смещают друг относительно друга. Такие уплотне1Ия вполне надежны, и протечки масла через них находятся в пределах нормы. В старых конструкциях гидротурбин применялись торцовые уплотнения [29], устанавливаемые под фланцем лопасти. Они имели ряд существенных недостатков.  [c.141]

Для уменьшения объемных потерь в турбине потечки через зазоры между ступицей и крышкой турбины и между ободом и нижним кольцом направляющего аппарата должны быть возможно малыми. С этой целью в этих местах предусматриваются уплотнения, величина зазоров в которых должна находиться в пределах (0,0003- 0,0004) что представляет определенные трудности.  [c.182]


Щелевые уплотнения (рис. VI.6, а) конструктивно просты и являются наиболее распространенными. Состоят они из концентрично расположенных вращающихся колец 1 и неподвижных 3 и выполняются либо с гладкими стенками, либо с расположенными одна против другой внутри щели канавками. В них поток, многократно расширяясь, теряет скорость и кинетическую энергию, а поступая из расширений в щели, теряет энергию на увеличение скорости. В результате этого увеличивается общий коэффициент сопротивления щели. Кольца щелевых уплотнений выполняют цилиндрическими и, если это требуется, с фланцами из стальных листов МСтЗ. Заготовки колец состоят из секторов, которые сваривают по стыкам и механически обрабатывают. Неподвижные кольца крепят болтами 2 и штифтами 4, иногда приваривают к основным деталям вращающиеся кольца также крепят к ступице и ободу или их части устанавливают в выточках и сваривают по стыкам непосредственно на рабочем колесе. Центрирование наружных колец по вращающимся производится путем перемещения их в пределах зазоров, предусмотренных в отверстиях для болтов, после чего кольца фиксируют штифтами.  [c.184]

Елочные уплотнения (рис. VI.6, б) в последнее время находят широкое применение. Они подобны уплотнениям с канавками и состоят из неподвижного кольца 5 или 8 и вращающегося 6, закрепленного или выточенного непосредственно на рабочем колесе 7. Длина щелей в этих уплотнениях мала. Сопротивление потоку они оказывают вследствие многократных расширений на выходе и сужений на входе в короткую щель, благодаря чему их общий коэффициент сопротивления близок к коэффициенту сопротивления уплотнений с канавками. Они менее опасны в отношении возможного задира при соприкасании и сухом трении, в них зазор задают минимальным, близким к нижнему пределу Ащ, так как считают, что при малой площади касания их кромки приработаются. Достоинством их является также компактность. Неподвижное кольцо елочного уплотнения центрируется также за счет зазоров, предусмотренных в отверстиях под шпильки 9, затянутые гайками 10. Фиксируют кольца штифтами 4. Выполняются кольца уплотнений литыми из стали 20ГСЛ или толстого проката из стали МСтЗ. Недостатком елочных уплотнений является их быстрый износ в воде, содержащей твердые абразивные взвешенные частицы.  [c.184]

Коэффициент теплопроводности Я вследствие уплотнения кристаллизующегося металла несколько возрастает. Однако, по мнению А. И. Вейника [34], применяемые сплавы имеют такие большие значения Я, что некоторое возрастание этой величины не может сильно сказаться на скорости затвердевания металла. Для металла в твердом состоянии коэффициент Я заметно возрастает. Так, для меди марки Ml в цилиндрических заготовках диаметром 70 и высотой 60 мм, затвердевших под атмосферным давлением, коэффициент Я находится в пределах 380—390 Вт/м-°С, а для образцов затвердевших  [c.14]

При кристаллизации под механическим давлением в результате большой скорости затвердевания, устранения газовой и усадочной пористости, измельчения структуры и уплотнения заготовок механические свойства меди и ее сплавов повышаются, но до определенного предела (рис. 64), при превышении которого они почти не повышаются. Для меди марки М3 этот предел соответствует 120—150 МН/м [86], для бронзы типа Си—10% Sn 50 МН/м [79], для меди Ml, латуни ЛМцА57-3-1 и бронзы Бр. АЖ9-4Л 150—200 МН/м значения оптимального давления близки к указанным выше и для других сплавов.  [c.126]


Смотреть страницы где упоминается термин Предел уплотнения : [c.43]    [c.611]    [c.442]    [c.98]    [c.41]    [c.18]    [c.230]    [c.487]    [c.450]    [c.422]    [c.237]    [c.505]    [c.248]    [c.228]    [c.222]    [c.222]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.87 ]



ПОИСК



Критический расход газа. Звуковой и вязкостный пределы переносимой мощности. Скачки уплотнения



© 2025 Mash-xxl.info Реклама на сайте